1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu TÀI LIỆU LUYỆN THI ĐẠI HỌC VÀ THPT CHUYÊN; MÔN TOÁN; CHUYÊN ĐỀ HÀM SỐ VÀ ĐỒ THỊ; BÀI TẬP HÀM SỐ BẬC HAI (PHẦN 4) pot

10 1,8K 54

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 295,16 KB

Nội dung

Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho.. Khảo sát sự biến thiên và vẽ đồ thị P của hàm số đã cho.. Tìm tọa độ giao điểm của đồ thị với trục hoành.. Khảo sát sự biến thiên và v

Trang 1

CHUYÊN ĐỀ HÀM SỐ VÀ ĐỒ THỊ

BÀI TẬP HÀM SỐ BẬC HAI (PHẦN 4)

- Bài 1 Cho hàm số yx22x  (P) 3

1 Xác định tọa độ đỉnh; trục đối xứng và hướng của bề lõm của (P)

2 Lập bảng biến thiên của hàm số và vẽ đồ thị (P)

3 Tìm giá trị nhỏ nhất của hàm số trên đoạn 2;1và giá trị tương ứng của x

4 Tìm tập hợp các giá trị của x sao cho y  0

2

yxmxm  (1); với m là tham số thực

1 Khi m  Ký hiệu đồ thị hàm số là (P) 4

a) Xác đinh tọa độ đỉnh; trục đối xứng; hướng của bề lõm của (P)

b) Lập bảng biến thiên và vẽ đồ thị (P)

2 Xác định giá trị của m để đồ thị hàm số đi qua điểm A1; 2

3 Tìm điểm cố định mà họ đồ thị luôn đi qua với mọi giá trị của m

Bài 3 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau

2

2

2

2

2

2

2

2

7, 4 2

8, 4

 

Bài 4 Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau

2

2

2

1,

2,

y

y

 

 

yf xaxbx c  Ký hiệu đồ thị hàm số là (P)

Xác định các hệ số , ,a b c trong mỗi trường hợp sau

1 (P) đi qua ba điểm A 1; 2 , B1; 2 , C2;1

2 (P) đi qua ba điểm D2;9 , E1; 6 , F4; 7

3 (P) có đỉnh là S2; 2 và đi qua A4; 2

yf xaxbx c  Ký hiệu đồ thị hàm số là (P)

Xác định các hệ số , ,a b c trong mỗi trường hợp sau

1 (P) đi qua ba điểm A 1;1 ,B1; 9 , C0;3

2 (P) có đỉnh là điểm D1; 4và đi qua điểm E  1;1

3 (P) có đỉnh là điểm M1; 4 và đi qua điểm N2; 3 

Trang 2

Bài 7 Cho hàm số yx x3 4

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho

2 Xét phương trình x x3 3m1 Hãy tìm giá trị của m để

a) Phương trình có ít nhất một nghiệm không âm

b) Phương trình có hai nghiệm cùng dương

c) Phương trình có ba nghiệm phân biệt

d) Phương trình có đúng hai nghiệm lớn hơn 1

Bài 8 Cho hàm số ya m x2 có đồ thị (P)

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số trong trường hợp am 1

2 Xác định a và m để

a) (P) đi qua hai điểm A1; 0 , B2; 2

b) (P) có trục đối xứng là đường thẳng x   và đi qua điểm 1 C1; 4

3 Tìm giá trị của a và m để (P) là một parabol nằm phía trên trục hoành

Bài 9 Cho hàm số yx2bx  có đồ thị (P) c

1 Tìm b và c trong mỗi trường hợp sau

a) (P) đi qua hai điểm A1; 2 , B2; 1 

b) Hàm số đạt giá trị nhỏ nhất bằng 1 khi x  1

2 Với b  ; hãy tìm các khoảng đồng biến và nghịch biến của hàm số đã cho c 2

Bài 10 Tìm parabol (P): yax2bx c trong các trường hợp sau

1 (P) có đỉnh là I  1; 2 và đi qua gốc tọa độ

2 (P) cắt trục tung tại điểm có tung độ bằng 2 và đi qua hai điểm A1;5 , B  2;8

3 (P) cắt trục tung tại điểm có tung độ bằng 2 đồng thời cắt trục hoành tại hai điểm có hoành độ 1 và 2

Bài 11 Cho hàm số yx24x  (P) 3

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Xác định giá trị của x sao cho y  0

3 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn 0; 3

4 Tịnh tiến đồ thị hàm số sang bên trái 3 đơn vị và xuống dưới 4 đơn vị

yx  x (P)

1 Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho

2 Xác định x để y  0

3 Tìm

 2;2   2;2 

yf xaxbx c trong các trường hợp sau

1 (P) đi qua điểm A8; 0và có đỉnh Y6; 12 

2 (P) đạt giá trị lớn nhất bằng 1

4khi

3 2

x  và tổng lập phương các nghiệm của phương trình y  bằng 9 0

3 (P) đạt giá trị nhỏ nhất bằng 3

4khi

1 2

x f  1  1 0

4 Đi qua điểm M2;3 , N2;3và phương trình tiếp tuyến tại đỉnh (P): y  1

5 Nhận trục tung làm trục đối xứng và cắt đường thẳng x2ytại hai điểm có hoành độ là 1 và 3

2

Trang 3

Bài 14

1 Lập phương trình họ parabol (P) đi qua điểm A1;3 , B0; 1 

2 Chứng minh rằng mọi đường thẳng của họ 2

d ymxm m luôn tiếp xúc với một parabol cố định

3 Lập phương trình đường parabol (P) biết nó đi qua ba điểm A1; 2 , B2; 0 , C3;1

Bài 15 Xác định các hệ số của parabol (P):   2

yf xaxbx c trong các trường hợp sau

1 (P) đi qua ba điểm A1;8 , B1; 0 , C4; 3

2 (P) có đỉnh là điểm S   2; 2và đi qua R  4; 6

3 (P) đi qua K  4; 6; cắt trục Ox tại hai điểm có hoành độ lần lượt là 1 và 2

4 (P) có đỉnh là I1; 0và cắt đồ thị hàm số hằng y  tại hai điểm có hoành độ 14  và 3

5 (P) đi qua điểm G  2;3; cắt trục Ox tại điểm có hoành độ bằng 1; cắt trục Oy tại điểm có tung độ bằng 3

yf xaxc

1 Tính R2009a2010c2011 biết rằng f  1  f  2 3; f  1  f 3  5

2 Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trong từng trường hợp sau

a) Đỉnh của (P) là điểm S0;3và một trong hai giao điểm của (P) với Ox là A  2; 0

b) (P) đi qua hai điểm A2; 3 , B2; 2 

Bài 17 Cho parabol (P): 2

2

yxxvà hai đường thẳng: d1:yx d; 2:y2xm

1 Tìm tọa độ giao điểm của hai đồ thị (P) và đường thẳng d1:yx

2 Xác định m để (P) và đường thẳng d có điểm chung duy nhất Tìm tọa độ điểm này 2

3 Xác định m để (P) và đường thẳng d cắt nhau tại hai điểm A, B phân biệt Tìm quỹ tích trung điểm của AB 2

4 Tìm m để (P) tiếp xúc với parabol   2

Pyxmx

Bài 18 Cho hàm số yx x 2 3

1 Vẽ đồ thị (G) của hàm số đã cho

2 Tìm tọa độ giao điểm của đồ thị với trục hoành Từ đó suy ra tập hợp các giá trị x sao cho y  0

3 Sử dụng đồ thị, hãy biện luận số nghiệm của phương trình sau theo m: x x 2 6 m

Bài 19 Cho hàm số ymx22mx3m  Gọi đồ thị hàm số là (P) 2

1 Tìm m để hàm số đồng biến trên đoạn 2;  

2 Tìm giá trị của m sao cho

a) (P) đi qua điểm A  2;3

b) (P) có đỉnh nằm trên đường thẳng : d y2x 5

c) (P) cắt trục Ox tại hai điểm; trong đó một điểm có hoành độ bằng 2

2 2

1 Vẽ đồ thị hàm số đã cho

2 Lập bảng biến thiên và tìm giá trị nhỏ nhất của hàm số y

3 Xác định giá trị nhỏ nhất của x sao cho y không âm

Bài 21 Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau

1 yx26x 8

2 yx2  x 1 3x

Trang 4

Bài 22

1 Tìm hàm số bậc hai có đồ thị là parabol (P); biết rằng đường thẳng : 9

4

d y   và (P) có duy nhất một điểm

chung; đồng thời đồ thị hàm hằng y  cắt (P) tại hai điểm có hoành độ lần lượt là 2 và 34 

2 Tìm a và b sao cho parabol (P): 2

2

yaxbx có đỉnh I2; 2 

3 Tìm các hệ số của parabol (P): 2

yaxbx c  biết nó có đỉnh trên trục Ox và đi qua A0;1 , B3; 4

Bài 23

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số 2  

3 1

y xxP

2 Từ đồ thị trên suy ra đồ thị 2  

y xxP

3 Biện luận số giao điểm của parabol (P') và đường thẳng ym

2 2

1 ; 1

1 Tính Tf 2  f  3  f  1

2 Khảo sát sự biến thiên và vẽ đồ thị (G) của hàm số đã cho

3 Tìm tọa độ giao điểm M của (G) với đồ thị hàm hằng 3

4

y 

4 Biện luận theo m số nghiệm của phương trình f x 5m 6

Bài 25

1 Lập phương trình đường thẳng d tiếp xúc với parabol (P): 1 2

2 1 3

yxx tại điểm có hoành độ bằng  2

2 Lập phương trình đường thẳng l tiếp xúc với parabol (P): y x23x tại điểm có tung độ bằng 1  5

3 Lập phương trình đường thẳng  có hệ số góc bằng 1 và tiếp xúc với (P): yx23x 5

Bài 26

1 Cho hai parabol   2   2

P y x P yx Chứng minh có vô số tam giác ABC có ba đỉnh thuộc parabol

 P mà các cạnh của tam giác đều tiếp xúc với parabol 2  P 1

2 Chứng minh rằng tập hợp các điểm cách đều một đường thẳng cho trước và một điểm cho trước là một đường cong parabol

Bài 27

1 Tìm quỹ tích đỉnh của họ parabol: yx2mx 1

2 Tìm tập hợp điểm mà từ mỗi điểm đó kẻ được hai tiếp tuyến vuông góc với nhau đến   1 2

: 2

P yx

3 Lập phương trình tiếp tuyến chung của hai đồ thị:   2   2

4 Tìm tất cả giá trị m sao cho   2   2

f xx   m xm  trên đoạn 0;1 là bằng 1 

Bài 28 Cho hàm số yx x22m  (1); với m là tham số thực 1

1 Với m  1

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho

b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số (1) trên miền 0; 6 

2 Biện luận số nghiệm của các phương trình sau theo m:

a) x x2 3m 4

b) x x22m  1 x

Trang 5

Bài 29 Cho hàm số yx22x  (1); với m là tham số thực 3

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho

2 Tìm giá trị nhỏ nhất của biểu thức Fx22x32013trên miền 4; 2

3 Tìm giá trị m để phương trình x22x3 4m5

a) Có bốn nghiệm phân biệt

b) Có đúng ba nghiệm

2 4

yf xxx x  (1); với m là tham số thực

1 Tính M 3f  5 4f75f 7

2 Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho

3 Xét phương trình 2

2 4

xx x  m

a) Định m để phương trình có nghiệm dương

b) Tìm m để phương trình có hai nghiệm trái dấu

2 2

x

x

    (1); với m là tham số thực

1 Tính 3  3 1 1  1

M   f   f   f

2 Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho

3 Tìm giá trị nhỏ nhất của y trên miền 4 5;

2 4

 

4 Tìm m để phương trình sau có hai nghiệm phân biệt cùng dương:

2

1

9

x x

  

Bài 32 Cho hàm số yx2 x1 (1); với m là tham số thực

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (1)

2 Biện luận số nghiệm dương của phương trình x2 x 1m theo tham số m

Bài 33 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): yx2

1 Tìm tọa độ hai điểm A và B thuộc (P) biết chúng có hoành độ lần lượt là 1 và 2

2 Trên cung AB của parabol (P); tìm tọa độ điểm C  1 x C 2sao cho tam giác ABC có diện tích lớn nhất

3 Với điểm C vừa tìm được, trung tuyến AM của tam giác ABC cắt (P) tại điểm I (I khác A)

Chứng minh hệ thức AI10MI

Bài 34

1 Tìm giá trị thực của p và q để giá trị lớn nhất của hàm số 2

yxpxq trên đoạn 1;1là nhỏ nhất

2 Tìm tất cả các giá trị m sao cho 2x2 x m 3   x

3 Tìm giá trị nhỏ nhất của hàm số sau theo m: 2  

4 Tìm m để bất phương trình sau có nghiệm trong đoạn 1;1: x1x 1m

Bài 35

1 Định m để parabol (P): 2

yxmx mcó đỉnh thuộc đường thẳng :y  1 x

2 Tìm các giá trị của a và b sao cho parabol (P): 2

3

yaxbx đi qua điểm A   1; 8và đạt giá trị lớn nhất bằng 2 khi x  1

Trang 6

Bài 36

1 Tìm điểm cố định của họ đồ thị 2  

ymxmxm

2 Tìm quỹ tích các đỉnh của họ parabol (P): 2  

yxmxm

3 Tìm quỹ tích các trung điểm của đoạn thẳng AB; trong đó A và B là các giao điểm phân biệt của hai đồ thị

P yxm d yx   x

Bài 37 Trong mặt phẳng với hệ tọa độ Oxy cho hai parabol có phương trình

1

2

1 Vẽ và xác định tọa độ giao điểm của hai đồ thị trên trong cùng một hệ trục tọa độ

2 Tìm m để đường thẳng ymcắt cả hai đồ thị tại bốn điểm phân biệt

Bài 38 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): 2

1

yxmx và đường thẳng d y:  mx2m 2

1 Với giá trị nào của m thì đường thẳng d:

a) Song song với đường thẳng :y5x m 2

b) Tạo với đường thẳng :l y 2013một góc 60

2 Tìm tất cả giá trị của m để

a) (P) cắt d tại hai điểm phân biệt A và B thỏa mãn: Tam giác BAO vuông tại B

b) (P) cắt d tại hai điểm P và Q mà độ dài đoạn thẳng PQ bằng 5

Bài 39 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): yx22xm 1

1 Khảo sát sự biến thiên và vẽ (P) với m  6

2 Tìm m để tung độ đỉnh của (P) lớn hơn 6

3 Xác định m sao cho đồ thị (P):

a) Tiếp xúc với trục hoành

b) Cắt trục Ox tại hai điểm nằm bên phải gốc tọa độ

Bài 40

1 Lập phương trình tiếp tuyến của parabol 2

1

yx   tại điểm x A  2;1

2 Lập phương trình tiếp tuyến của (P): yx23x biết tiếp tuyến 2

a) Tạo với tia Ox một góc 45

b) Vuông góc với đường thẳng 1 2

3

y  x

Bài 41

1 Tìm phương trình đường parabol tiếp xúc đồng thời với ba đường thẳng

1: 5; 2: 3 3 ; 3 12

d yxd y  x yx

2 Chứng minh hai parabol   2   2

P yxxP yxx luôn tiếp xúc với đường thẳng cố định

3 Tìm a sao cho giá trị nhỏ nhất của hàm số   2 2

yf xxaxaa trên đoạn 0; 2 bằng 3 

4 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số yx x 1x2x3

Bài 42 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P):   2

yf xaxbx c

1 Tìm quỹ tích những điểm M mà từ đó kẻ được hai tiếp tuyến vuông góc đến (P)

2 Tìm quỹ tích những điểm M mà từ đó kẻ được đúng một tiếp tuyến đến (P)

yxmxm

1 Tìm m sao cho (P) có đỉnh nằm đường thẳng d: 3y2x 7

2 Biện luận số giao điểm của (P) và parabol   2

Pyxmxmtheo m

3 Chứng minh (P) luôn cắt đường thẳng y  tại hai điểm phân biệt A, B mà độ dài AB là một hằng số x

Trang 7

Bài 44 Cho hàm số

2

4 4

y  (1)

1 Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số (1)

2 Viết phương trình đường tiếp tuyến của (P) đi qua điểm A2; 2 

3 Tìm tập hợp điểm mà qua mỗi điểm đó tồn tại hai tiếp tuyến của (P) đi qua vuông góc với nhau

4 Với giá trị nào của a thì đường thẳng :y2a  cắt (P) tại hai điểm có hoành độ nhỏ hơn 3 ? x

Bài 45 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): y x24x ; đường thẳng : 23 d y4x17 0

1 Khảo sát sự biến thiên và vẽ (P)

2 Lập phương trình đường thẳng l vuông góc với d đồng thời tiếp xúc (P)

3 Tìm tọa độ hai điểm A thuộc (P) và B thuộc d sao cho độ dài đoạn thẳng AB đạt giá trị nhỏ nhất

Bài 46 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): 2

y xx

1 Tìm giao điểm của (P) với trục hoành

2 Khảo sát sự biến thiên và vẽ đồ thị (P)

3 Giả dụ d là đường thẳng đi qua điểm A3; 2và có hệ số góc m

a) Lập phương trình đường thẳng d theo m

b) Chứng minh rằng với mọi m, đường thẳng d luôn cắt (P) tại hai điểm phân biệt B và C

c) Xác định giá trị m sao cho độ dài đoạn thẳng BC đạt giá trị nhỏ nhất

Bài 47 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): 2

1

yaxbx

1 Xác định a và b để cho đỉnh của parabol (P)

a) Nằm trên đường thẳng :d y 1 2x

b) Nằm trên đường phân giác của góc phần tư thứ nhất

2 Vẽ (P) với a và b vừa tìm được

Bài 48 Cho hàm số yx2 5 x23x (1)

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (1)

2 Tìm giá trị nhỏ nhất và giá trị nhỏ nhất của hàm số trên miền 5; 4

3 Xét phương trình 2 2

xxxm

a) Tìm m để phương trình có nghiệm dương

b) Tìm m để phương trình có hai nghiệm trái dấu

c) Tìm m để phương trình có ba nghiệm phân biệt

yf x  x

1 Tính S7f 4 f  3  f 1

2 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho

3 Dựa vào đồ thị (C), hãy tìm x sao cho y  0

4 Tìm m để phương trình 2

4x 2m : 6 a) Có đúng ba nghiệm

b) Có hai nghiệm phân biệt trái dấu

c) Có bốn nghiệm phân biệt

Bài 50 Cho hàm số

3 2 3

x

x

 

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho

2 Xét phương trình ym

Hãy tìm m để phương trình có đúng một nghiệm không âm

Trang 8

Bài 51 Cho hàm số yx24x  có đồ thị (P) 3

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Xác định đồ thị hàm số (C) đối xứng với (P) qua điểm H 1;1

3 Tìm m để parabol (P) cắt đường thẳng : d y2mx tại hai điểm nằm cùng phía với đường thẳng 5 x  7

4 Từ đồ thị (P) suy ra đồ thị   2

Pyxx Từ đó tìm m để phương trình x24x3 2m3 a) Có ba nghiệm phân biệt

b) Có bốn nghiệm phân biệt

Bài 52 Cho hàm số yx22x  có đồ thị (P) 2

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Tìm đồ thị (H) đối xứng với đồ thị (P) qua đường thẳng :y2x

3 Tìm m để (P) cắt đường thẳng : d y2mx  tại hai điểm A và B sao cho tam giác OAB vuông tại O 1

4 Tìm m để mọi điểm thuộc đường thẳng y2m  luôn nằm phía dưới parabol (P) 3

5 Xét phương trình x22x2 m22m  Tìm m để phương trình có ít nhất một nghiệm thuộc 2 3;1

4 1

yxx  có đồ thị (P)

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Tìm đồ thị (H) đối xứng với (P) qua đường thẳng : 1 3

2

d yx

3 Xét sự tương giao giữa parabol (P) và đường thẳng :y2mx  Tìm m để (P) cắt 1  tại hai điểm nằm về hai phía của đường tròn tâm O bán kính bằng 2

4 Tìm điểm M thuộc (P) và điểm N thuộc đường thẳng : 4 l x3y24 sao cho độ dài đoạn MN ngắn nhất 0

Bài 54 Cho hàm số yx22x  có đồ thị (P) 9

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Tìm đồ thị (H) đối xứng với (P) qua trục hoành

3 Xét đường thẳng : 4 x3y  Tìm bán kính nhỏ nhất của đường tròn có tâm nằm trên  và tiếp xúc 1 0

với parabol (P)

4 Tìm m để parabol (P) tiếp xúc với đường thẳng đi qua điểm M1; 3m có hệ số góc bằng 1

Bài 55 Trong mặt phẳng với hệ tọa độ Oxy cho parabol (P): 2

yxx và đường thẳng d y: 2m x  4

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Tìm m sao cho phương trình 2 2

xxm  có hai nghiệm thuộc đoạn 2; 3

3 Xác định m để (P) cắt d tại hai điểm phân biệt có hoành độ x x thỏa mãn: 1, 2

a) x1 3 x2

b) x116x2

c) 3 3

3xx 2x 6x

Bài 56 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yx  và đường thẳng d đi qua A1; 2với hệ số

góc bằng m

1 Tìm tọa độ hai điểm thuộc (P) đối xứng với nhau qua gốc tọa độ

2 Tìm hai điểm M và N thuộc (P) sao cho OM2ON0

(điểm M có hoành độ âm)

3 Xác định giá trị của m để đường thẳng d cắt parabol (P) tại hai điểm A và B có hoành độ trái dấu, đồng thời khoảng cách giữa A và B lớn hơn 5

4 Xét hai điểm A0; 3 , B5; 0 Tìm tọa độ điểm C thuộc parabol (P) để OACB là tứ giác nội tiếp

5 Tìm hai điểm P và Q nằm trên (P) thỏa mãn: POQ là tam giác đều nhận trục tung làm trục đối xứng

Trang 9

Bài 57 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yx  và đường thẳng d y: 2x3m 1

1 Khảo sát sự biến thiên và vẽ parabol (P)

2 Định m để đường thẳng d cắt :y  tại điểm 2 x M x y ; sao cho 2 2

fyx  đạt giá trị lớn nhất

3 Với giá trị nào của m thì parabol (P) cắt đường thẳng d tại hai điểm A và B sao cho 2 2

OAOB nhỏ nhất

4 Tìm m để parabol (P) cắt đồ thị hàm số 3 2

yxmxmx tại ba điểm phân biệt

Bài 58 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yxx

1 Gọi  P là đồ thị đối xứng của (P) qua gốc tọa độ Khảo sát sự biến thiên và vẽ đồ thị  P

1 Tìm trên đồ thị  P các điểm M cách đều hai điểm A2; 0 , B  2; 4

2 Xét sự tương giao giữa  P và đường thẳng :y  5 7mx Định m để  P cắt  tại hai điểm phân biệt,

trong đó có một điểm hoành độ nhỏ hơn 9

3 Tìm tất cả các giá trị m để (P) cắt parabol   2

Q y  xmxmtại hai điểm đều có hoành độ dương

Bài 59 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yx   x

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Tìm m để đường thẳng d y: 2mx m cắt parabol (P) tại điểm có tung độ bằng 5

3 Xét đường thẳng l quay xung quanh điểm I2;1và có hệ số góc 2t Tìm t để parabol (P) cắt l tại hai điểm phân biệt A và B sao cho OAB là tam giác vuông tại O

4 Với giá trị nào của m thì (P) cắt đồ thị   3   2

C yxmxmx tại ba điểm phân biệt ?

Bài 60 Trong mặt phẳng với hệ tọa độ Oxy cho hai parabol   2

Q yxmx

1 Khảo sát sự biến thiên và vẽ đồ thị (P) với m   1

2 Tìm m để hai parabol đã cho cắt nhau tại một điểm thuộc trục tung

3 Định m để parabol (Q) chắn trên trục hoành một đoạn thẳng có độ dài bằng 6

4 Xét sự tương giao giữa parabol (P) và trục hoành Gọi giao điểm là hai điểm A và B Tìm m để đoạn thẳng

AB chứa đoạn 2; 5 

Bài 61 Trong mặt phẳng với hệ tọa độ Oxy cho hai parabol   2

Q yxx

1 Khảo sát sự biến thiên và vẽ (Q)

2 Trong trường hợp nm Tìm n để parabol (P) chắn trên trục hoành một đoạn có độ dài bằng 5

3 Tìm m để phương trình 2

xxm có hai nghiệm thuộc đoạn 2; 3 

4 Tìm m thì đường thẳng : d ymx2m  cắt parabol (P) tại hai điểm có hiệu hoành độ bằng 1 3

Bài 62 Trong mặt phẳng với hệ tọa độ Oxy cho   2

P yxmxmvà đường thẳng :d ymx2m 1

1 Khảo sát sự biến thiên và vẽ đồ thị (P) với m  1

2 Gọi M là điểm mà đường thẳng d quay xung quanh Tính độ dài đoạn OM

3 Tìm giá trị m để d cắt (P) tại hai điểm phân biệt A và B sao cho góc AOB60

Bài 63 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yxaxa  (a là tham số thực)

1 Tìm a để parabol (P) có đỉnh nằm bên trái đường thẳng 7

5

x 

2 Tìm a để giá trị nhỏ nhất của hàm số yx22ax3a đạt giá trị lớn nhất 1

3 Tìm a để (P) cắt trục hoành tại hai điểm phân biệt đều có hoành độ dương

4 Xét sự tương giao giữa (P) và đồ thị (C) của hàm số 3   2

yxaxx  Xác định a để (P) cắt (C)

tại ba điểm phân biệt đều có hoành độ lớn hơn 1

3

Trang 10

Bài 64 Trong mặt phẳng với hệ tọa độ cho parabol yx23x  (P) 2

1 Tìm tọa độ giao điểm của (P) và trục hoành

2 Từ đồ thị (P) hãy suy ra đồ thị   2

Pyxx

3 Định m để (P) cắt đường thẳng : d y3mx  tại hai điểm A và B sao cho 2 MA MB  với 6 M 1;1

Bài 65 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yxmxm

1 Tìm m để parabol (P) có tung độ đỉnh không vượt quá 3

2 Tìm điểm cố định mà họ đường cong (P) luôn đi qua với mọi giá trị m

3 Tìm giá trị m để parabol (P) cắt đường thẳng :y2x m  tại hai điểm có hoành độ 1 x x thỏa mãn 1, 2

xxm

Bài 66 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yxmxm  (m là tham số thực)

1 Khảo sát sự biến thiên và vẽ đồ thị (P) với 1

2

m 

2 Tìm m để đỉnh của parabol (P) nằm phía trong hình tròn tâm O bán kính bằng 2

3 Với giá trị nào của m thì (P) cắt đồ thị (C) của hàm số yx37mx22x tại ba điểm phân biệt có hoành 5

độ tương ứng x x x sao cho 1, 2, 3 2 2 2

xxx

Bài 67 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yx  x m (m là tham số thực)

1 Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) với m  1

2 Với giá trị nào của m thì đỉnh của (P) nằm trên đường thẳng : 2 d x3y  2 0

3 Tìm m để parabol (P) cắt trục hoành tại hai điểm A và B có hoành độ x x sao cho 1, 2 x122x2  1

4 Xác định m để parabol (P) cắt đường thẳng 2

:y x 4mx 7

    tại một điểm nằm trên trục đối xứng của hai

tia Ox và Oy

Bài 68 Trong mặt phẳng với hệ tọa độ Oxy cho parabol   2

P yxmxm  (m là tham số thực)

1 Tìm điểm cố định mà parabol (P) luôn luôn đi qua với mọi giá trị m

2 Khảo sát sự biến thiên và vẽ đồ thị (P) với m 2

3 Tìm m để parabol (P) cắt trục hoành tại hai điểm A và B sao cho độ dài đoạn AB bằng 4

4 Biện luận số giao điểm của (P) và đồ thị (C) của hàm số 3 2  

yxmx  m x tại ba điểm phân biệt có hoành độ đều nhỏ hơn 3

Bài 69 Trong mặt phẳng với hệ tọa độ Oxy cho hai parabol   2

P y xx và   2

Q yxmx

1 Khảo sát sự biến thiên và vẽ đồ thị (P)

2 Với giá trị nào của m thì parabol (Q) có đỉnh nằm trên parabol   2

:

R yx

3 Tìm m để parabol (Q) cắt đường thẳng :y1 2 m x 2m1tại hai điểm phân biệt nằm về hai phía của trục tung

4 Tìm tất cả các điểm M x y nằm trên (P) thỏa mãn: M có tọa độ nguyên dương  ; 

Ngày đăng: 26/02/2014, 13:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w