1. Trang chủ
  2. » Trung học cơ sở - phổ thông

de thi hoc ky 2 mon toan lop 10 (co dap an) so 66

5 396 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 136,5 KB

Nội dung

Trường THPT Nguyễn Trãi ĐỀ THI HỌC KÌ II NĂM HỌC 2012-2013 MÔN THI: TOÁN 10 Thời gian làm bài: 90 phút (Không kể thời gian giao đề) A. PHẦN CHUNG (7điểm). (Dành cho tất cả các thí sinh) Câu I(2điểm). Gii bt phương trnh và hệ bt phương trnh sau: 1) 2 6 0 4 x x x + − < − 2) 2 2 2 3 2 0 5 4 0 x x x x  − + + ≥   − + >   . Câu II(1điểm). Để kho sát kết qu thi tuyển sinh môn Toán trong kỳ thi tuyển sinh đại học năm vừa qua của trường A, người điều tra chọn một mẫu gồm 100 học sinh tham gia kỳ thi tuyển sinh đó. Điểm môn Toán (thang điểm10) của các học sinh này được cho ở bng phân bố tần số sau đây: Điểm 0 1 2 3 4 5 6 7 8 9 10 Tần số 1 1 3 5 8 13 19 24 14 10 2 N = 100 Tm mốt và số trung vị của bng phân bố tần số trên. Câu III(2điểm). 1) Tính các giá trị lượng giác của góc , α biết sin α = 5 4 và . 2 π α π < < 2) Chứng minh rằng: cot α − tan α = 2cot2 α Câu IV(2điểm). Trong mặt phẳng Oxy cho hai điểm A(1 ; 0) và B(-2 ; 9). 1) Viết phương trnh tổng quát của đường thẳng ∆ đi qua hai điểm A và B. 2) Viết phương trnh đường tròn (C) có tâm I(2 ; 7) và tiếp xúc với đường thẳng .∆ B. PHẦN RIÊNG (3điểm). (Thí sinh học chương trình nào thì làm theo chương trình đó) 1. Theo chương trình cơ bản. Câu Va(2điểm). 1) Gii bt phương trnh 2 5.x − < 2) Tm m để biểu thức 2 2 ( ) 2( 2) 0f x x m x m= − − + > , với .x ∀ ∈ R. Câu VIa(1điểm). Tm tọa độ các tiêu điểm, các đỉnh ; độ dài trục lớn, trục bé của elip (E): 2 2 4 25 100.x y+ = 2. Chương trình nâng cao. Câu Vb(2điểm). 1) Gii bt phương trnh 2 10 21 3.− + − < −x x x 2) Cho phương trnh x 2 - 2(m-1)x + 2m 2 - 5m + 3 = 0. Tm m để phương trnh có hai nghiệm dương phân biệt. Câu VIb(1điểm). 1) Viết phương trnh chính tắc của hypebol (H) biết tâm sai e = 2, các tiêu điểm của (H) trùng với các tiêu điểm của elip (E): 2 2 1. 25 16 x y + = 2) Tm điểm M trên (H) sao cho 1 2 2MF MF= . HẾT ĐÁP ÁN VÀ THANG ĐIỂM THI HỌC KÌ II- MÔN TOÁN 10 NĂM HỌC 2012-2013 CÂU Ý NỘI DUNG ĐIỂM I (2đ) 1(1đ) 2 2 6 0 3 4 0 4 x x x x x x =  + − = ⇔  = −  − = ⇔ = x −∞ -3 2 4 +∞ 2 6x x + − + 0 - 0 + + 4x − - - - 0 + VT - 0 + 0 - + Tập nghiệm: ( ; 3) (2;4)S = −∞ − ∪      0,5        0,25 0,25 2(1đ) 2 2 1 2 2 2 3 2 0 1 1 1 2 5 4 0 4 x x x x x x x x  − ≤ ≤   − + + ≥   ⇔ ⇔ − ≤ <   <  − + >     >   + Bt phương trnh 2 2 3 2 0x x− + + ≥ có tập nghiệm 1 1 ;2 2 S   = −     + Bt phương trnh 2 5 4 0x x− + > có tập nghiệm ( ) ( ) 2 ;1 4;S = −∞ ∪ +∞ + Tập nghiệm của hệ là: 1 2 1 ;1 2 S S S   = ∩ = − ÷    (Chỉ đúng một tập nghiệm S 1 hoặc S 2 thì cho 0,5 đ)      0,75 0,25 II (1đ) + Mốt 7 O M = (ứng với tần số là 24) + Số trung vị 50 51 6 7 6,5 2 2 e x x M + + = = = 0,5 0,5 III (2đ) 1(1đ) 2 2 2 4 9 os 1 sin 1 5 25 c x x   = − = − =  ÷   3 os 5 3 os loai v < < 5 2 c x c x π α π  = −   ⇒    =  ÷     4 3 tan ; cot 3 4 α α =− =− 0,25        0,5 0,25 2(1đ) Chứng minh : cotx – tanx = 2 cos2x Ta có : cotx – tanx = 2 2 cos sin cos sin sin cos sin .cos x x x x x x x x − − = cos2 2cot 2 1 sin 2 2 x x x = = 0,5 0,5 IV (3đ) 1(1đ) + Đường thẳng ∆ có VTCP 3( 1;3)AB = − uuur ⇒ VTPT (3;1)n = r + Đường thẳng ∆ đi qua A(1 ; 0) nhận vectơ pháp tuyến (3;1)n = r nên có PT: 3( x – 1) + 1(y – 0) = 0 ⇔ 3x + y – 3 = 0 0,5 0,25 0,25 2(1đ) + Pt đường tròn có tâm I(a;b) và bán kính R có dạng ( ) ( ) 2 2 2 x a y b R− + − = + V đường tròn có tâm I(2; 7) và tiếp xúc với ∆ : 3x + y -3= 0 nên ta có bán kính ( ) 2 3.2 7 3 , 10 3 1 R d I AB + − = = = + + Kết luận: Phương trnh đường tròn cần tm là: ( ) ( ) 2 2 2 7 10x y− + − = 0,25 0,25 0,25 0,25 Chương trình cơ bản Va (2đ) 1(1đ) 2 5 2 5 2 5 x x x − > −  − < ⇔  − <  3 3 7 7 x x x > −  ⇔ ⇔ − < <  <  Vậy tập nghiệm của bt phương trnh là: ( ) 3;7S = − 0,5 0,5 2(1đ) 2 2 ( ) 2( 2) 0f x x m x m= − − + > , với x ∀ ∈ R. 0 ⇔ ∆ < 4 4 0 1m m⇔ − + < ⇔ > 0,5 0,5 VIa (1đ) (E): 2 2 2 2 4 25 100 1 25 4 x y x y+ = ⇔ + = Phương trnh (E)có dạng: 2 2 2 2 1 x y a b + = Ta có a = 5 ; b = 4 ; 2 2 3c a b = − = Tọa độ các tiêu điểm 1 2 ( 3;0); (3;0)F F − Tọa độ các đỉnh (-5;0) ; (5;0) ; (0;-4) ; (0;4). Độ dài trục lớn 2a = 10; độ dài trục bé 2b = 8 0,25 0,25 0,25 0,25 Chương trình nâng cao Vb (2đ) 1(1đ) 2 2 2 2 3 0 10 21 3 10 21 0 10 21 ( 3) x x x x x x x x x − >   − + − < − ⇔ − + − ≥   − + − < −  ⇔ 2 2 3 10 21 0 2 16 30 0 >   − + − ≥   − + >  x x x x x    0,5 ⇔ 3 3 7 (5;7] 3 5 >   ≤ ≤ ⇔ ∈   <    >    x x x x x    0,5 2(1đ) Viết được      > > >∆ 0 0 0 ' P S hoặc          > >− >∆ 0 0 0 ' a c a b          > +− > − >−+− ⇔ 0 3 23 0 3 )1(2 0572 2 2 mm m mm gii được        >∨< > << 21 1 2 5 1 mm m m Kết luận: 2 < m < 2 5        0,5          0,5 VIb (1đ) 1(0,5đ) Elip (E) có 1 2 ( 3;0), (3;0)F F− Phương trnh chính tắc của (H) có dạng: 2 2 2 2 1 x y a b − = (a, b, c dương ; 2 2 2 c a b= + ) Theo gi thiết ta có: c = 3 ; 2 2 9a b+ = 3 2 2 c e a a = = ⇒ = ( a 2 = 9 4 ) ; 2 27 3 3 4 2 b b= ⇒ = Vậy phương trnh chính tắc của hypebol (H): 2 2 1 9 27 4 4 x y − =        0,25        0,25 2(0,5đ) Gọi M(x;y) ( )H∈ , khi đó 1 2 3 3 2 2 2 2 2 2 MF MF x x= ⇔ + = − 2 1 105 4 16 9 135 4 4 x y x y  = → = −   ⇔  = → = ±   Vậy 1 2 9 135 9 135 ( ; ) , ( ; ) 4 4 4 4 M M − 0,25        0,25 . (0;4). Độ dài trục lớn 2a = 10; độ dài trục bé 2b = 8 0 ,25 0 ,25 0 ,25 0 ,25 Chương trình nâng cao Vb (2 ) 1(1đ) 2 2 2 2 3 0 10 21 3 10 21 0 10 21 ( 3) x x x x x. − 0,5 0,5 2( 1đ) 2 2 ( ) 2( 2) 0f x x m x m= − − + > , với x ∀ ∈ R. 0 ⇔ ∆ < 4 4 0 1m m⇔ − + < ⇔ > 0,5 0,5 VIa (1đ) (E): 2 2 2 2 4 25 100 1 25

Ngày đăng: 24/02/2014, 09:53

w