Đề số 7
ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học
Môn TOÁNLớp 10
Thời gian làm bài 90 phút
Câu 1:
1) Giải các bất phương trình sau:
a)
x x
x
x
2
4 3
1
3 2
− +
< −
−
b)
x x
2
3 5 2 0− − >
2) Cho
x
y x
x
2
, 1
2 1
= + >
−
. Định x để y đạt giá trị nhỏ nhất.
Câu 2: Sau một tháng gieo trồng một giống hoa, người ta thu được số liệu sau về chiều cao (đơn vị
là milimét) của các cây hoa được trồng:
Nhóm Chiều cao Số cây đạt được
1 Từ 100 đến 199 20
2 Từ 200 đến 299 75
3 Từ 300 đến 399 70
4 Từ 400 đến 499 25
5 Từ 500 đến 599 10
a) Lập bảng phân bố tần suất ghép lớp của mẫu số liệu trên.
b) Vẽ biểu đồ tần suất hình cột .
c) Hãy tính số trung bình cộng, phương sai, độ lệch chuẩn của các số liệu thống kê.
Câu 3:
a) Cho tana = 3 . Tính
a
a a
3 3
sin
sin cos+
b) Cho
a b
1 1
cos , cos
3 4
= =
. Tính giá trị biểu thức
A a b a bcos( ).cos( )= + −
.
Câu 4: Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(0; 9), B(9; 0), C(3; 0)
a) Tính diện tích tam giác ABC.
b) Viết phương trình đường thẳng d đi qua C và vuông góc với AB
c) Xác định tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC
Hết
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . .
1
Đề số 7
ĐÁP ÁN ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học
Môn TOÁNLớp 10
Thời gian làm bài 90 phút
Câu 1:
1) a)
x x x x x x
x x
x x x
2 2
4 3 ( 1) 3
1 0 0 ( ;0) ;1
3 2 3 22 3 2
− + − + −
< − ⇔ < ⇔ < ⇔ ∈ −∞ ∪
÷
− − −
b)
x x x x
2 2
3 5 2 0 3 5 2− − > ⇔ > −
x x x x x
2 2
1 2
(3 5 2)(3 5 2) 0 ( ; 2) ; (1; )
3 3
⇔ − + + − > ⇔ ∈ −∞ − ∪ ∪ +∞
÷
2) Cho
x x
y x y
x x
2 1 2 1 1 5
, 1 2
2 1 2 1 22 2
−
= + > ⇒ = + + ≥ + =
− −
.
y đạt giá trị nhỏ nhất
x
x x x x
x
2 2
1 2
( 1) 4 2 3 0 3
2 1
−
⇔ = ⇔ − = ⇔ − − = ⇔ =
−
(x > 1)
Khi đó:
y
min
5
2
=
.
Câu 2:
Câu 3:
a) Vì
2
3 3 3
sin tan (1 tan ) 3(1 9) 30 15
tan 3 cos 0
27 1 28 14
sin cos tan 1
α α α
α α
α α α
+ +
= ⇒ ≠ ⇒ = = = =
+
+ +
b) Cho
a b
1 1
cos , cos
3 4
= =
. Tính giá trị biểu thức
A a b a bcos( ).cos( )= + −
.
Ta có:
A a b a b a b
1
cos( ).cos( ) (cos2 cos2 )
2
= + − = +
Mặt khác ta có
a a
2
1 7
cos2 2cos 1 2. 1
9 9
= − = − = −
,
b b
2
1 7
cos2 2cos 1 2. 1
16 8
= − = − = −
2
Vậy
A
1 77 119
2 9 8 144
= − − = −
÷
.
Câu 4: Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(0; 9), B(9; 0), C(3; 0)
a) Tính diện tích tam giác ABC.
Ta có: B(9; 0), C(3; 0) nằm trên trục hoành, A(0; 9) nằm trên trục tung.
⇒ BC = 6, ∆ABC có độ đường cao AH =
d A Ox( , ) 9=
.
Vậy
ABC
S BC AH
1 1
. .6.9 27
2 2
= = =
(đvdt)
b) Viết phương trình đường thẳng d đi qua C và vuông góc với AB
AB (9; 9) 9(1; 1)= − = − ⇒
uuur
phương trình đường thẳng d là
x y 3 0− − =
c) Xác định tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC
• Gọi
I a b( ; )
là tâm của đường tròn ngoại tiếp tam giác ABC.
Ta có:
IA IB
IA IC
2 2
2 2
=
=
⇔
a b a b
a b a b
2 22 2
2 22 2
(0 ) (9 ) (9 ) (0 )
(0 ) (9 ) (3 ) (0 )
− + − = − + −
− + − = − + −
⇔
a
b
6
6
=
=
⇒
I(6;6)
.
======================
3
. (cos2 cos2 )
2
= + − = +
Mặt khác ta có
a a
2
1 7
cos2 2cos 1 2. 1
9 9
= − = − = −
,
b b
2
1 7
cos2 2cos 1 2. 1
16 8
= − = − = −
2
Vậy
A
1 7 7 119
2. 2 3 2 2 3 2
− + − + −
< − ⇔ < ⇔ < ⇔ ∈ −∞ ∪
÷
− − −
b)
x x x x
2 2
3 5 2 0 3 5 2 − > ⇔ > −
x x x x x
2 2
1 2
(3 5 2) (3 5 2)