1. Trang chủ
  2. » Khoa Học Tự Nhiên

Handbook of differential equations ordinary differential equations volume 3

753 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Handbook Of Differential Equations Ordinary Differential Equations Volume 3
Tác giả A. Cańada, P. Drábek, A. Fonda
Trường học University of Granada
Chuyên ngành Mathematical Analysis
Thể loại edited book
Năm xuất bản 2006
Thành phố Granada
Định dạng
Số trang 753
Dung lượng 4,8 MB

Nội dung

Ngày đăng: 27/05/2022, 13:50

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] R.P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore (1993) Sách, tạp chí
Tiêu đề: Uniqueness and Nonuniqueness Criteria for Ordinary Differential"Equations
[2] J. Andres, On the multivalued Poincaré operators, Topol. Methods Nonlinear Anal. 10 (1997), 171–182 Sách, tạp chí
Tiêu đề: On the multivalued Poincaré operators
Tác giả: J. Andres, On the multivalued Poincaré operators, Topol. Methods Nonlinear Anal. 10
Năm: 1997
[3] J. Andres, Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions, Dif- ferential Inclusions and Optimal Control, J. Andres, L. Górniewicz and P. Nistri, eds., Lecture Notes in Nonlinear Anal., Vol. 2, N. Copernicus Univ., Toru´n (1998), 19–32 Sách, tạp chí
Tiêu đề: Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions
Tác giả: J. Andres, Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions, Dif- ferential Inclusions and Optimal Control, J. Andres, L. Górniewicz and P. Nistri, eds., Lecture Notes in Nonlinear Anal., Vol. 2, N. Copernicus Univ., Toru´n
Năm: 1998
[4] J. Andres, Almost-periodic and bounded solutions of Carathéodory differential inclusions, Differential Integral Equations 12 (1999), 887–912 Sách, tạp chí
Tiêu đề: Almost-periodic and bounded solutions of Carathéodory differential inclusions
Tác giả: J. Andres, Almost-periodic and bounded solutions of Carathéodory differential inclusions, Differential Integral Equations 12
Năm: 1999
[5] J. Andres, Multiple bounded solutions of differential inclusions. The Nielsen theory approach, J. Differen- tial Equations 155 (1999), 285–310 Sách, tạp chí
Tiêu đề: Multiple bounded solutions of differential inclusions. The Nielsen theory approach
Tác giả: J. Andres, Multiple bounded solutions of differential inclusions. The Nielsen theory approach, J. Differen- tial Equations 155
Năm: 1999
[7] J. Andres, Ordinary differential equations in the lack of uniqueness, Atti. Sem. Mat. Fis. Univ. Modena 49 (2001), 247–267 Sách, tạp chí
Tiêu đề: Ordinary differential equations in the lack of uniqueness
Tác giả: J. Andres, Ordinary differential equations in the lack of uniqueness, Atti. Sem. Mat. Fis. Univ. Modena 49
Năm: 2001
[8] J. Andres, Nielsen number, Artin braids, Poincaré operators and multiple nonlinear oscillations, Nonlinear Anal. 47 (2001), 1017–1028 Sách, tạp chí
Tiêu đề: Nielsen number, Artin braids, Poincaré operators and multiple nonlinear oscillations
Tác giả: J. Andres, Nielsen number, Artin braids, Poincaré operators and multiple nonlinear oscillations, Nonlinear Anal. 47
Năm: 2001
[9] J. Andres, Nielsen number and multiplicity results for multivalued boundary value problems, Nonlin- ear Analysis and Differential Equations, M.R. Grossinho, M. Ramos, C. Rebelo and L. Sanchez, eds., Birkhọuser, Basel (2001), 175–187 Sách, tạp chí
Tiêu đề: Nielsen number and multiplicity results for multivalued boundary value problems
Tác giả: J. Andres, Nielsen number and multiplicity results for multivalued boundary value problems, Nonlin- ear Analysis and Differential Equations, M.R. Grossinho, M. Ramos, C. Rebelo and L. Sanchez, eds., Birkhọuser, Basel
Năm: 2001
[10] J. Andres, Poincaré’s translation multioperator revisited, Proceedings of the 3rd Polish Symposium on Nonlinear Analysis, W. Kryszewski and A. Nowakowski, eds., Lecture Notes in Nonlinear Anal., Vol. 3, N. Copernicus Univ., Toru´n (2002), 7–22 Sách, tạp chí
Tiêu đề: Poincaré’s translation multioperator revisited
Tác giả: J. Andres, Poincaré’s translation multioperator revisited, Proceedings of the 3rd Polish Symposium on Nonlinear Analysis, W. Kryszewski and A. Nowakowski, eds., Lecture Notes in Nonlinear Anal., Vol. 3, N. Copernicus Univ., Toru´n
Năm: 2002
[11] J. Andres, Using the integral manifolds to solvability of boundary value problems, Set-Valued Mappings with Application in Nonlinear Analysis, R.P. Agarwal and D. O’Regan, eds., Ser. Math. Anal. Appl., Vol. 4, Taylor and Francis, Singapore (2002), 27–38 Sách, tạp chí
Tiêu đề: Using the integral manifolds to solvability of boundary value problems
Tác giả: J. Andres, Using the integral manifolds to solvability of boundary value problems, Set-Valued Mappings with Application in Nonlinear Analysis, R.P. Agarwal and D. O’Regan, eds., Ser. Math. Anal. Appl., Vol. 4, Taylor and Francis, Singapore
Năm: 2002
[12] J. Andres, Applicable fixed point principles, Handbook of Topological Fixed Point Theory, R.F. Brown, M. Furi, L. Górniewicz and B. Jiang, eds., Springer, Berlin (2005), 687–739 Sách, tạp chí
Tiêu đề: Applicable fixed point principles
Tác giả: J. Andres, Applicable fixed point principles, Handbook of Topological Fixed Point Theory, R.F. Brown, M. Furi, L. Górniewicz and B. Jiang, eds., Springer, Berlin
Năm: 2005
[13] J. Andres, Nielsen number and differential equations, Fixed Point Theory Appl. 2 (2005), 137–167 Sách, tạp chí
Tiêu đề: Nielsen number and differential equations
Tác giả: J. Andres, Nielsen number and differential equations, Fixed Point Theory Appl. 2
Năm: 2005
[14] J. Andres and R. Bader, Asymptotic boundary value problems in Banach spaces, J. Math. Anal. Appl. 247 (2002), 437–457 Sách, tạp chí
Tiêu đề: Asymptotic boundary value problems in Banach spaces
Tác giả: J. Andres and R. Bader, Asymptotic boundary value problems in Banach spaces, J. Math. Anal. Appl. 247
Năm: 2002
[15] J. Andres and A.M. Bersani, Almost-periodicity problem as a fixed-point problem for evolution inclusions, Topol. Methods Nonlinear Anal. 18 (2001), 337–349 Sách, tạp chí
Tiêu đề: Almost-periodicity problem as a fixed-point problem for evolution inclusions
Tác giả: J. Andres and A.M. Bersani, Almost-periodicity problem as a fixed-point problem for evolution inclusions, Topol. Methods Nonlinear Anal. 18
Năm: 2001
[16] J. Andres, J. Fišer and L. Jüttner, On a multivalued version of the Sharkovski˘ı theorem and its application to differential inclusions, Set-Valued Anal. 10 (2002), 1–14 Sách, tạp chí
Tiêu đề: On a multivalued version of the Sharkovski˘ı theorem and its application"to differential inclusions
Tác giả: J. Andres, J. Fišer and L. Jüttner, On a multivalued version of the Sharkovski˘ı theorem and its application to differential inclusions, Set-Valued Anal. 10
Năm: 2002
[17] J. Andres and T. Fürst, An example of application of the Nielsen theory to integro-differential equations, Proc. Amer. Math. Soc. 134 (2006), 1985–1993 Sách, tạp chí
Tiêu đề: An example of application of the Nielsen theory to integro-differential equations
Tác giả: J. Andres and T. Fürst, An example of application of the Nielsen theory to integro-differential equations, Proc. Amer. Math. Soc. 134
Năm: 2006
[18] J. Andres and T. Fürst, Nontrivial applications of Nielsen theory to differential systems, J. Differential Equations, to appear Sách, tạp chí
Tiêu đề: Nontrivial applications of Nielsen theory to differential systems
[19] J. Andres, G. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math.Soc. 351 (1999), 4861–4903 Sách, tạp chí
Tiêu đề: Boundary value problems on infinite intervals
Tác giả: J. Andres, G. Gabor and L. Górniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math.Soc. 351
Năm: 1999
[20] J. Andres, G. Gabor and L. Górniewicz, Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwendungen 19 (2000), 35–60 Sách, tạp chí
Tiêu đề: Topological structure of solution sets to multivalued asymptotic"problems
Tác giả: J. Andres, G. Gabor and L. Górniewicz, Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwendungen 19
Năm: 2000
[21] J. Andres, G. Gabor and L. Górniewicz, Acyclicity of solution sets to functional inclusions, Nonlinear Anal. 49 (2002), 671–688 Sách, tạp chí
Tiêu đề: Acyclicity of solution sets to functional inclusions
Tác giả: J. Andres, G. Gabor and L. Górniewicz, Acyclicity of solution sets to functional inclusions, Nonlinear Anal. 49
Năm: 2002