1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Tài liệu BEST PRACTICES for: Monitoring, Verifi cation, and Accounting of CO2 Stored in Deep Geologic Formations doc

132 524 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 132
Dung lượng 3,23 MB

Nội dung

Monitoring, Veri cation, and Accounting of CO 2 Stored in Deep Geologic Formations BEST PRACTICES for: First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. i Monitoring, Verication, and Accounting of CO 2 Stored in Deep Geologic Formations DOE/NETL-311/081508 January 2009 National Energy Technology Laboratory www.netl.doe.gov ii Table of Contents List of Acronyms and Abbreviations _________________________________________________________________ iv List of Tables ________________________________________________________________________________________ vii List of Figures ______________________________________________________________________________________ viii Executive Summary _______________________________________________________________________________ ES-1 1.0 Introduction ______________________________________________________________________________________ 1-1 1.1 Importance of CO 2 Monitoring and Accounting Protocols _____________________________________________ 1-1 1.2 Regulatory Compliance _________________________________________________________________________ 1-2 1.3 Objective and Goals of Monitoring ________________________________________________________________ 1-2 1.4 Monitoring Activities ___________________________________________________________________________ 1-3 1.5 Need for Multiple Projects with Varying Geologic Characteristics ______________________________________ 1-3 2.0 Monitoring Techniques _____________________________________________________________________________ 2-1 3.0 Developments in Monitoring Techniques from DOE Supported and Leveraged Monitoring Activities ___________ 3-1 3.1 Core R&D _____________________________________________________________________________________ 3-1 3.1.1 Atmospheric Monitoring Methods Developments ________________________________________________ 3-1 3.1.2 Near-Surface Monitoring Methods Developments ________________________________________________ 3-2 3.1.3 Subsurface Monitoring Methods Developments _________________________________________________ 3-4 3.1.4 Enhanced Coalbed Methane Methods _________________________________________________________ 3-6 3.1.4.1 Near-Surface Monitoring Methods ______________________________________________________ 3-6 3.1.4.2 Subsurface Monitoring Methods ________________________________________________________ 3-6 3.2 Core R&D Test Locations ________________________________________________________________________ 3-7 3.3 International Projects ___________________________________________________________________________ 3-9 3.4 Regional Carbon Sequestration Partnerships ______________________________________________________ 3-10 3.5 Applicable Core R&D, International, and Regional Carbon Sequestration Partnership Program Monitoring Eorts __________________________________________________________ 3 -11 3.5.1 Simulation ______________________________________________________________________________ 3 -11 3.5.2 Geophysical Approaches ___________________________________________________________________ 3-12 3.5.3 Crustal Deformation ______________________________________________________________________ 3-14 3.5.4 Geochemical Methods _____________________________________________________________________ 3-15 3.5.5 Surface Monitoring _______________________________________________________________________ 3-15 4.0 Review of EPA Permitting Requirements _______________________________________________________________ 4-1 4.1 RCSP Project UIC Classication Summary __________________________________________________________ 4-2 4.2 UIC Mandatory Requirements ____________________________________________________________________ 4-3 4.3 EPA’s 2008 Proposal for Developing New Requirements for CO 2 Injection for GS __________________________ 4-3 5.0 Addressing the Objectives and Goals of Monitoring _____________________________________________________ 5-1 5.1 Role of Primary Technologies ____________________________________________________________________ 5-1 5.2 Role of Secondary MVA Technologies _____________________________________________________________ 5-1 5.3 Role of Potential Additional MVA Technologies _____________________________________________________ 5-1 5.4 Application of Monitoring Techniques and Regulatory Compliance ____________________________________ 5-2 5.5 Pre-Operation Phase ___________________________________________________________________________ 5-6 5.5.1 Pre-operation Monitoring ___________________________________________________________________ 5-7 5.6 Operation Phase ______________________________________________________________________________ 5-10 5.6.1 Operation Monitoring _____________________________________________________________________ 5-10 Table of Contents iii 5.7 Closure Phase ________________________________________________________________________________ 5-13 5.8 Post-Closure Phase ____________________________________________________________________________ 5-14 5.9 Application of MVA Technologies at GS Field Projects _______________________________________________ 5-14 6.0 MVA Developments for Large-Scale Tests in Various Settings _____________________________________________ 6-1 6.1 Gulf Coast Mississippi Strandplain Deep Sandstone Test (Moderate Porosity and Permeability) _____________ 6-5 6.1.1 Target Formation __________________________________________________________________________ 6-5 6.1.2 Site Characterization _______________________________________________________________________ 6-6 6.1.3 Risk Assessment and Mitigation Strategy _______________________________________________________ 6-6 6.1.4 MVA Activities _____________________________________________________________________________ 6-6 6.2 Nugget Sandstone Test (Signicant Depth, Low Porosity and Permeability) ____________________________ 6 -10 6.2.1 Description of Target Formation _____________________________________________________________ 6 -10 6.2.2 Risk Assessment and Mitigation Strategy ______________________________________________________ 6 -11 6.2.3 MVA Activities____________________________________________________________________________ 6 -11 6.3 Cambrian Mt. Simon Sandstone Test (Moderate Depth, Low Porosity and Permeability) _________________ 6 -11 6.3.1 Target Formation _________________________________________________________________________ 6 -11 6.3.2 Site Characterization ______________________________________________________________________ 6 -12 6.3.3 Risk Assessment Strategy __________________________________________________________________ 6 -13 6.3.4 MVA Activities ____________________________________________________________________________ 6 -14 6.4 San Joaquin Valley Fluvial-Braided Deep Sandstone Test (High Porosity and Permeability) _______________ 6 -16 6.4.1 Target Formation _________________________________________________________________________ 6-16 6.4.2 Site Characterization ______________________________________________________________________ 6-17 6.4.3 Risk Assessment and Mitigation Strategy ______________________________________________________ 6 -17 6.4.4 MVA Activities ____________________________________________________________________________ 6-18 6.5 Williston Basin Deep Carbonate EOR Test _________________________________________________________ 6-23 6.5.1 Description of Target Formations ____________________________________________________________ 6-23 6.5.2 Regional Characterization _________________________________________________________________ 6-24 6.5.3 Site Development _________________________________________________________________________ 6-24 6.5.4 Risk Assessment and Mitigation Strategy ______________________________________________________ 6-25 6.5.5 MVA Activities ____________________________________________________________________________ 6-26 6.6 Impact of Secondary and Potential Additional MVA Technologies on Large-Scale Storage ________________ 6-27 6.7 Future Implications from Case Study MVA Packages ________________________________________________ 6-28 References _________________________________________________________________________________________ R-1 Appendix I _________________________________________________________________________________________AI-1 Appendix II ________________________________________________________________________________________ AII-1 Appendix III ______________________________________________________________________________________ AIII-1 Appendix IV ______________________________________________________________________________________ AIV-1 Appendix V________________________________________________________________________________________ AV-1 Appendix VI ______________________________________________________________________________________ AVI-1 List of Reviewers _________________________________________________________________________________ LoR-1 Table of Contents iv List of Acronyms and Abbreviations Acronym/Abbreviation Denition 2-D ________________________________________ Two-Dimensional 3-D _______________________________________Three-Dimensional 4-D _______________________________________Four-Dimensional AC ________________________________________Accumulation Chamber ADRS ______________________________________Amargosa Desert Research Site ANSI _______________________________________ American National Standards Institute AoR _______________________________________Area of Review API ________________________________________American Petroleum Institute Ar _________________________________________Argon ARI ________________________________________Advanced Resources International ASTM ______________________________________American Standard Test Method BEG _______________________________________ Bureau of Economic Geology BGS _______________________________________British Geological Survey Big Sky_____________________________________Big Sky Carbon Sequestration Partnership BLM _______________________________________Bureau of Land Management BNL _______________________________________Brookhaven National Laboratory C _________________________________________Carbon Ca ________________________________________Calcium CASSM _____________________________________Continuous Active Seismic Source Monitoring CBL _______________________________________Cement Bond Log CBM _______________________________________ Coalbed Methane CCS _______________________________________ Carbon Capture and Storage CCX _______________________________________Chicago Climate Exchange CES _______________________________________ Clean Energy Systems CGM _______________________________________Craig-Geen-Morse Water Flooding Model CH 4 _______________________________________Methane CIR ________________________________________Color Infrared Cl _________________________________________Chlorine CL ________________________________________ Cathodoluminescense cm ________________________________________centimeter(s) CMG ______________________________________Computer Modeling Group CO 2 ________________________________________Carbon Dioxide CO2CRC ____________________________________Cooperative Research Centre for Greenhouse Gas Technologies CRT _______________________________________Cathode Ray Tube CSLF ______________________________________Carbon Sequestration Leadership Forum DIAL _______________________________________Dierential Absorption LIDAR DOE _______________________________________ U.S. Department of Energy DTPS ______________________________________Distributed Thermal Perturbation Sensor EC ________________________________________ Eddy Covariance EDS _______________________________________Energy Dispersive X-Ray Spectroscopy ECBM ______________________________________Enhanced Coalbed Methane EELS _______________________________________Electron Energy Loss Spectroscopy EMIT ______________________________________Electromagnetic Induction Tomography EOR _______________________________________Enhanced Oil Recovery EPMA ______________________________________Electron Probe Microanalyzer EM ________________________________________Electromagnetic EPA _______________________________________U.S. Environmental Protection Agency ERT _______________________________________Electrical Resistivity Tomography List of Acronyms and Abbreviations v Acronym/Abbreviation Denition ES&H ______________________________________Environmental, Safety, and Health ft _________________________________________Feet FE _________________________________________DOE’s Oce of Fossil Energy FLOTRAN ___________________________________Flow and Transport Simulator g _________________________________________Gram(s) GFZ _______________________________________ GeoForschungsZentrum GHG _______________________________________Greenhouse Gas(es) GIS ________________________________________Geographic Information System GPR _______________________________________Ground Penetrating Radar GPS _______________________________________ Global Positioning System GS ________________________________________Geological Storage/Sequestration H/H 2 _______________________________________Hydrogen H 2 O _______________________________________Water H 2 S ________________________________________Hydrogen Sulde H 2 SO 4 ______________________________________Sulfuric Acid He ________________________________________Helium HC ________________________________________Hydrocarbon HCl ________________________________________Hydrogen Chloride HVAC ______________________________________Heating, Ventilation & Air Conditioning Hz ________________________________________Hertz IEA GHG ___________________________________ IEA Greenhouse Gas Programme in _________________________________________Inch(es) IR _________________________________________Infrared IRGA ______________________________________ Infrared Gas Analyzer IEA ________________________________________International Energy Agency IOGCC _____________________________________ Interstate Oil & Gas Compact Commission IP _________________________________________Induced Polarization ISO ________________________________________International Organization for Standardization IPCC _______________________________________Intergovernmental Panel on Climate Change km ________________________________________Kilometer(s) Kr _________________________________________ Krypton KHz _______________________________________Kilohertz LANL ______________________________________Los Alamos National Laboratory LBNL ______________________________________Lawrence Berkeley National Laboratory LCD _______________________________________Liquid Crystal Display LEERT ______________________________________Long Electrode Electrical Resistance Tomography LIDAR ______________________________________ Light Detection and Ranging LLNL ______________________________________ Lawrence Livermore National Laboratory LVST _______________________________________Large Volume Sequestration Test mD________________________________________Millidarcy MDT _______________________________________Modular Dynamic Tester m _________________________________________Meter(s) mi ________________________________________Mile(s) mg ________________________________________ milligram(s) Mg ________________________________________Magnesium MGSC _____________________________________Midwest Geological Sequestration Consortium MIT _______________________________________ Mechanical Integrity Test MVA _______________________________________Monitoring, Verication, and Accounting MRSCP _____________________________________Midwest Geological Carbon Sequestration Consortium NaCl _______________________________________ Sodium Chloride List of Acronyms and Abbreviations vi Acronym/Abbreviation Denition N _________________________________________ Nitrogen Ne ________________________________________Neon NETL ______________________________________National Energy Technology Laboratory NNSA ______________________________________National Nuclear Security Administration O/O 2 _______________________________________Oxygen ORD _______________________________________NETL’s Oce of Research and Development ORNL ______________________________________Oak Ridge National Laboratories OST _______________________________________ DOE’s Oce of Science and Technology P _________________________________________ Pressure PC ________________________________________Pulverized Coal PCOR ______________________________________Plains CO 2 Reduction Partnership PFC _______________________________________ Peruorocarbon(s) PFT _______________________________________Peruorocarbon Tracers PNC _______________________________________ Pulsed Neutron Capture ppm _______________________________________Parts per Million ppmv ______________________________________Parts per Million by Volume psi ________________________________________Pounds per Square Inch PTRC ______________________________________Petroleum Technology Research Centre QC ________________________________________Quality Control R&D _______________________________________Research and Development RCSP ______________________________________Regional Carbon Sequestration Partnership RGGI ______________________________________Regional Greenhouse Gas Initiative Rn ________________________________________Radon RST _______________________________________Reservoir Saturation Tool S __________________________________________Sulfur SAPT ______________________________________Standard Annular Pressure Test SAR _______________________________________Synthetic Aperture Radar scfd _______________________________________Standard Cubic Feet per Day SDWA _____________________________________Safe Drinking Water Act SECARB ____________________________________Southeast Regional Carbon Sequestration Partnership SF 6 ________________________________________ Sulfur Hexauoride SNL _______________________________________Sandia National Laboratory SO 4 ________________________________________Sulfate SP ________________________________________Self-Potential/Spontaneous Polarization STEM ______________________________________Scanning Transmission Electron Microscope SWP _______________________________________ Southwest Regional Partnership T __________________________________________Temperature TAME ______________________________________The Andersons Marathon Ethanol (Plant) TDS _______________________________________ Total Dissolved Solids USDW _____________________________________Underground Sources of Drinking Water UIC ________________________________________Underground Injection Control USGS ______________________________________U.S. Geological Survey USIT _______________________________________Ultrasonic Imaging Tool VDL _______________________________________Variable Density Log VSP _______________________________________Vertical Seismic Prole WestCarb __________________________________West Coast Regional Carbon Sequestration Partnership Xe ________________________________________Xenon ZEPP-1 _____________________________________Zero-Emissions Power Plant ZERT ______________________________________Zero Emission Research and Technology List of Acronyms and Abbreviations vii List of Tables Table 1-1: DOE MVA Goals Outline and Milestones _________________________________________________________ 1-2 Table 2-1: Comprehensive List of Proposed Monitoring Methods Available for GS Projects_________________________ 2-1 Table 3-1: Classication of Primary Models Used by RCSPs __________________________________________________ 3-12 Table 4-1: Breakdown of RCSP (Phase II and Phase III) UIC Permits by Sink Type __________________________________ 4-2 Table 4-2: Summary of Current Mandatory Technical Requirements for for Class I, Class II, Class V, and Class VI (Proposed) UIC Injection Wells ________________________________________________ 4-4 Table 5-1: List of RCSPs’ Monitoring Tools for Phase II and Phase III Projects _____________________________________ 5-3 Table 5-2: MVA Technologies that Enable Recognition of Leakage to the Atmosphere and Shallow Subsurface in Order to Ensure 99 Percent Retention of CO 2 _________________________________________ 5-16 Table 6-1: Comparison of Site Geology for Each Case Study Project ___________________________________________ 6-3 Table 6-2: Comparison of MVA Tools Used by Each of the Selected Case Studies _________________________________ 6-4 Table 6-3: Summary of MVA Plans for Gulf Coast Mississippi Strandplain Deep Sandstone Test _____________________ 6-9 Table 6-4: Summary of MVA Program to be Implemented at Large-Scale Injection Sites __________________________ 6-15 Table 6-5: Basic and Enhanced Monitoring Packages and a Comparison to the Proposed Monitoring Program _______ 6-21 Table 6-6: Summary of the Potential Risks Associated with Large-Scale Injection of CO 2 __________________________ 6-25 List of Tables viii List of Figures Figure 3-1: Amplitude dierence map at the Midale Marly horizon for the Weyburn Monitor 1 (a) and 2 (b) surveys relative to the baseline survey. The normalized amplitudes are RMS values determined using a 5-ms window centered on the horizon. ________________________________________ 3-13 Figure 3-2: δ 13 C {HCO 3 } in produced uids at Weyburn. The well locations (black dots) represent the locations of data points that are used to produce the contour plots. Values are per mil dierences in the ratio of 12 C to 13 C relative to the PDB standard. ____________________________________ 3-13 Figure 3-3: Time lapse seismic data collection and interpretation from large CO 2 injection projects. Three successive seismic volumes from the Sleipner project, Norway. Upper images are cross-sections through the injection point; the lower images show impedance changes at the top of the CO 2 plume. Injection began in 1996, between the rst two surveys. _____________________________________ 3-14 Figure 5-1: Decision tree for pre-operational and operational phase monitoring techniques for GS project based on mandatory monitoring requirements and proposed Class VI requirements. Primary technologies are listed with black text and solid gure lines, whereas Secondary and Potential Additional Technologies are listed with red text and dashed gure lines. Light-grey lines depict proposed UIC regulatory changes for Class VI Wells. _________________________________________ 5-5 Figure 5-2: Decision tree for post-injection monitoring techniques for a GS project based on mandatory monitoring requirements. Primary technologies are listed with black text and solid gure lines, whereas Secondary and Potential Additional Technologies are listed with red text and dashed gure lines. Light-grey lines depict proposed UIC regulatory changes for Class VI Wells. __________________ 5-6 Figure 5-3: Potential leakage pathways along an existing well: between cement and casing (Paths a and b), through the cement (c), through the casing (d), through fractures (e), and between cement and formation (f). ______________________________________________________________________________ 5-12 Figure 6-1: Hierarchical Monitoring Strategy _______________________________________________________________ 6-7 Figure 6-2: Example of contingency plans for Gulf Coast Mississippian uvial sandstone injection during initial injection period. Major risks during injection period: pressure and buoyancy-driven ow through damaged wells or fracture networks. Probability increases over time as CO 2 quantity and pressure increases and as AoR increases. _____________________________________________________ 6-8 Figure 6-3: Schematic Showing Overall Monitoring Approach for Saline Formation LVST __________________________ 6-20 Figure AIII-1: Crustal deformation survey interpretations. (Left) Tiltmeter array interpretation from an oil eld operation, revealing the location of a small change in surface elevation. Image courtesy of Pinnacle Technologies, Inc. (Right) InSAR dierence map showing complex subsidence (red) and uplift (blue) associated with oil eld production near Bakerseld, California, from August 1979 to September 1999. Color bands show roughly 60 millimeters of change from red to blue; resolution is one millimeter deformation. The image shows large oil elds and illustrates how faults can aect the distribution of deformation. ____________________________________AIII-9 Figure AIII-2: Schematic Drawing of the U-Tube Sampling Technology _________________________________________ AIII-11 List of Figures [...]... maximize understanding of CO2 behavior and determine what monitoring tools are most effective across different geologic regimes, as opposed to tailoring a site-specific MVA package ES-4 1.0 Introduction Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations 1.0 Introduction Atmospheric levels of CO2 have risen significantly from preindustrial levels of 280 parts per million... Cruz, and LBNL The program addresses optimization of ECBM recovery using CO2, in addition to monitoring, verification, and risk assessment of CO2 GS in coalbeds A numerical modeling study is using a state -of- the-art CBM simulator to 3.0 Developments in Monitoring Techniques from DOE Supported and Leveraged Monitoring Activities define the physical and operational boundaries and tradeoffs for safe and. .. transparency, and credibility in GHG quantification, monitoring, reporting, and verification 2 ISO 14065 specifies principles and requirements for bodies that undertake validation or verification of GHG assertions 1-1 like oil, gas, and CO2 In principle, storage in deep brine-filled formations is the same as storage in oil or gas reservoirs, but the geologic seals that would keep the CO2 from rapidly rising... being extensively monitored to observe the movement of the CO2 Before injection, several monitoring techniques were executed, including baseline aqueous geochemistry, wireline logging, crosswell seismic, crosswell EM imaging, and vertical seismic profiling (VSP), along with hydrologic testing and surface water and gas monitoring Monitoring was periodically repeated during injection and is continuing... approximate depth of 650 meters in the saline Stuttgart Formation The CO2SINK project deploys numerous monitoring and measurement technologies that are focused on increasing the understanding of subsurface transport of CO2 in saline formations In particular, the application of surface and wellbore seismic, wellbore logging, electrical resistivity tomography, geochemical sampling, and thermal logging provide... Summary This document should be of interest to a broad audience interested in reducing greenhouse gas (GHG) emissions to the atmosphere It was developed for regulatory organizations, project developers, and national and state policymakers to increase awareness of existing and developing monitoring, verification, and accounting (MVA) techniques Carbon dioxide (CO2) sinks are a natural part of the carbon... various geologic and regional settings The program’s core R&D agenda focuses on increased understanding of CO2 GS, MVA technology and cost, and regulations through field testing of GS technologies A major portion of DOE’s Core R&D is aimed at providing an accurate accounting of stored CO2 and a high level of confidence that the CO2 will remain permanently sequestered MVA research is being developed at... Joaquin Valley Fluvial-Braided Deep Sandstone Test (High Porosity and Permeability): Large-scale injection of CO2 into a deep saline formation beneath a power plant site (the Olcese and/ or Vedder sandstones of the San Joaquin Valley, California) 5 Williston Basin Deep Carbonate EOR Test: CO2 sequestration and enhanced oil recovery (EOR) in select oil fields in the Williston Basin, North Dakota A minimum... Quantifying inter-well interactions as large plumes develop, focusing on interaction of pressure, heterogeneity, and gravity as controls on migration • Better understanding pressure and capillary seals • Developing and assessing the effectiveness of existing and novel monitoring tools • Assessing how these monitoring tools can be used efficiently, effectively, and hierarchically in a mature monitoring... tests, including the Frio Brine Pilot, West Pearl Queens Field Test, and the Weyburn Field test Frio Brine Pilot, Texas – The Frio Brine Pilot in Texas is a project testing MVA techniques (Hovorka et al., 2005) This is the first field test in the United States to investigate the ability of brine formations to store CO2 Phase I of the project involved the injection of 1,600 tons of CO2 into a mile-deep . Monitoring, Veri cation, and Accounting of CO 2 Stored in Deep Geologic Formations BEST PRACTICES for: First Edition Disclaimer This. reflect those of the United States Government or any agency thereof. i Monitoring, Veri cation, and Accounting of CO 2 Stored in Deep Geologic Formations DOE/NETL-311/081508 January

Ngày đăng: 18/02/2014, 01:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN