1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề đáp án thi HSG Toán 842893

20 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 307,71 KB

Nội dung

ĐỀ I Bài Chứng minh : a, (n^5- 5n^3+4n) chia hết cho 120 với m,n thuộc Z giải a)Ta cã : n5 – 5n3 + 4n = n5 – n3 – 4n3+ 4n = n3(n2 - 1) – 4n( n2 - 1) = n(n - 1)( n + 1)(n - 2)(n + 2) lµ tÝch cđa sè nguyên liên tiếp có hai số bội ( số béi cđa 4, mét sè lµ béi cđa 3, mét sè lµ béi cđa 5) VËy tÝch cđa sè nguyªn liªn tiÕp chia hÕt cho 8,3,5 = 120 b, Phân tích đa thức thành nhân tử: B  x  5x    7x x  5x   12x 2 giải B  x  5x    7x x  5x   12x 2 Đặt Khi B  y2  7xy  12x B  y  3xy  4xy  12x  y y  3x   4x y  3x   y  3x y  4x   x  5x   3x x  5x   4x  x  5x   y  x  2x  x  x   Bài 2: Cho biểu thức : 2 x x2 2 x x  3x ):( ) A(   2 x x  x3 x 4 2 x a,Tìm ĐKXĐ rút gọn biểu thức A ? b,Tìm giá trị x để A > 0? c,Tính giá trị A trường hợp : |x - 7| = giải a) ThuVienDeThi.com 2  x   x  x       x  2 2  x   x  3x  x    2 x  x3  A( x  3x  x x2 2 x (2  x)  x  (2  x) x (2  x)    ):( 3)  x( x  3)  x x   x 2x  x (2  x)(2  x) x( x  2) x(2  x) x2   (2  x)(2  x)( x  3) x  4x x  0, x  2, x  A  x 3 x2  8x x(2  x)  (2  x)(2  x) x  Vậy với b) Với  x 3  x  0, x  3, x  2 : A   4x2 0 x 3 ( Vì 4x2 > x # 0)  x  3(TMDKXD) Vậy với x > A > c) x   x7     x   4  x  11(TMDKXD)   x  3( KTMDKXD) Với x = 11 A = 121 Bµi ( 3®iĨm) a) Giải phương trình: x  x  x  16 x  72 x  x  20 x  12 x  42    x2 x8 x4 x6 b) Giải phơng trình với nghiệm số nguyên: x( x + x + 1) = 4y( y + 1) Giải ThuVienDeThi.com a) ( 1,5 điểm)  ( x  2)   ( x  8) ( x  4)  ( x  6)   x2 x8 x4 x6 x2  x8  x4  x6 x2 x8 x4 x6         x2 x8 x4 x6 x2 x8 x4 x6 x  16 x  24   ( x  2)( x  8) ( x  4)( x  6) 2 8   (5x+16)(x+4)(x+6) = (5x+24)(x+2)(x+8)  (5x+16)(x2 +10x + 24) = (5x+24)( x2 +10x + 16)  5x3 + 50x2 + 120x + 16x2 + 160x + 16.24 = 5x3 + 50x2 + 80x + 24x2 + 240x + 24.16  8x2 + 40x =  8x(x + 5) = x = 0; x = -5 Đối chiếu điều kiện kết luận nghim b) ( 1,5 im) + Phơng trình đợc biến ®ỉi thµnh: (x + 1)(x + 1) = (2y + 1) 2 + Ta chøng minh (x + 1) (x + 1) nguyên tố ! Vì nÕu d = UCLN (x+1, x + 1) th× d phải số lẻ (vì 2y+1 lẻ) 2  x2  x d  x  1 d   x  1 d   x  1 d    2 d  x   d   x d    x  1 d  mµ d lẻ nên d = + Nên muốn (x + 1)(x + 1) số phơng Thì (x+1) (x + 1) phải số phơng §Ỉt:  x   k  (k + x)(k – x) =  k  hc k  1 2  x   t x  + Víi x = th× (2y + 1) = m·n pt)  x  y = hc y = -1.(Thỏa ThuVienDeThi.com Vậy nghiệm phơng trình là: (x;y) Bài ( điểm) Cho hình vuông ABCD, độ dài cạnh a Một điểm M chuyển động cạnh DC (M D, M C) chọn điểm N cạnh BC cho MAN = 45o, DB thứ tự cắt AM, AN E F Chøng minh:  ABF  AMC 2.Chøng minh  AFM =  AEN = 90o Chøng minh S  AEF = S  AMN Chứng minh chu vi tam giác CMN không đổi M chuyển động DC Gọi H giao ®iĨm cđa MF vµ NE Chøng Minh: MH.MF + NH.NE = CN2 + CM2 Giải Bài ( điểm) A B F N H I E K D M C Chøng minh:  ABF  AMC ( 1,25 điểm) -Ta cm:  ABF =  ACM = 450 -  BAF =  MAC ( v× cïng céng víi gãc CAN b»ng 450 ) suy :  ABF  AMC Chøng minh  AFM =  AEN = 90o ( 1,5 điểm) Tõ  AFB   AMC (g.g) AF AB AF AM    (1) AM AC AB AC Cã  MAF =  BAC = 45 0(2) => Tõ vµ =>  AFM   ABC =>  AFM = ABC = 90o ThuVienDeThi.com C/M hoàn toàn tơng tự cã  AEN = 900 v× vËy  AFM =  AEN = 90o S  AEF = 1/2 S  AMN (2 điểm) AF AE  AM AN SAEF AF =>  AEF   AMN (c.g.c) => ) (1) ( SAMN AM Cã  FAM = 450,  AFM = 900 Cã  AFM   AEN => => AFM Vuông cân đỉnh F nên AM2 = AF2 + FM2 = 2AF2 => ( AF ) = AM Thay vµo (1) ta ®ỵc SAEF = hay: S  AEF = 1/2 S  AMN SAMN C/M chu vi  CMN không đổi ( 1,25 im) Trên tia đối tia DC lÊy ®iĨm K cho DK = BN  ADK =  ABN => AK = AN vµ  BAN =  DAK ®ã  AMN =  AKM (c.gc) => MN=KM V× vËy: Chu vi  CMN = MN + CN +CM = CM + KM + CN = CD + KD + CN = CD + NB + CN = CD + CB = 2a không đổi Tức là: Chu vi CMN không thay đổi M chuyển động cạnh DC Chứng Minh: MH.MF + NH.NE = CN2 + CM2 (2 điểm) Kẻ HI MN I - Cm: MHI   MNF => MH.MF =MI.MN - Cm: NHI  NME => NH.NE =NI.NM - suy ra: MH.MF + NH.NE =MI.MN + NI.NM = MN( MI+NI ) = MN2 - áp dụng định lí Pitago vào CMN ta có: MN2 = MC2 +CN2 VËy: MH.MF + NH.NE = MC2 +CN2 Bµi a) Chứng minh rằng: x3m + + x3n + + chia heát cho x2 + x + với m, n  N ThuVienDeThi.com b) Cho a; b; clà số đo ba cạnh tam gi¸c chøng minh r»ng a b c    bc ca ab giải Bµi 5: ( điểm) a) ( 1,0 điểm) Ta coù: x3m + + x3n + + = x3m + - x + x3n + – x2 + x2 + x + = x(x3m – 1) + x2(x3n – 1) + (x2 + x + 1) Vì x3m – x3n – chia hết cho x3 – nên chia hết cho x2 + x + Vaäy: x3m + + x3n + + chia heát cho x2 + x + với m, n  N b) ( 1,0 điểm) §Ỉt x= b + c ; y= c + a ; z = a + b ta cã a = yzx ; b= ta cã (1) zx y   ; c = x yz yzx zx y x yz    2x 2y 2z y z x z x y  1  1  1  x x y y z z ( y x z x z y  )(  )(  )6 x y x z y z ThuVienDeThi.com Bđt đúng? Bi a Phõn tích đa thức thành nhân tử: x2  xy  y  b Giải phương trình: x 1  x   x    x  2012  2012 2013 2012 2011 c Tìm đa thức f ( x) biết: f ( x) chia cho x  dư 5; f ( x) chia cho x  dư 7; f ( x) chia cho ( x  2)( x  3) thương x 1 đa thức dư bậc x Giải a, x2  xy  y  = ( x2 – 9) + 2y(x + 3) = (x – 3)(x + 3) + 2y(x + 3) =(x+ 3)(x + 2y – 3) b, x   x   x    x  2012  2012  2013 2012 2011 x 1 x2 x 3 x  2012 1 1     1   2013 2012 2011 x  2014 x  2014 x  2014 x  2014       (x 2013 2012 2011 – 2014)( 1    2013 2012 )=0  x = 2014 c,Gọi dư phép chia f(x) cho x2 - ax + b Ta có : f(x) = (x – 2)(x – 3)(x2- 1) + ax + b Theo : f(2) = nên ta có 2a + b = ; f(3) = nên 3a + b = HS tính a = ; b = Vậy đa thức cần tìm : f(x) = (x – 2)( x – 3)(x2 - 1) + 2x + Bài P  7.2014n  12.1995n Cho: với n N ; Chứng minh: a P chia hết cho 19 ThuVienDeThi.com Q ( x  n)(1  n)  n2 x  ( x  n)(1  n)  n2 x  a ,P = 7.2014n + 12.1995n = 19.2014n -12.2014n + 12.1995n = 19.2014n - 12(2014n -1995n) Ta có : 19 2014n  19 ; (2014n -1995n)  19 nên P  19 b,Q = ( x  n)(1  n)  n x   x  x n  n  n  n x  2 2 ( x  n)(1  n)  n x  = x (n  n  1)  n  n  x (n  n  1)  n  n  = 2 2 x2  x2n  n2  n  n2 x2  (n  n  1)( x  1) (n  n  1)  (n  n  1)( x  1) (n  n  1) Vậy Q không phụ thuộc vào x Q= (n  )2  n2  n  0  n  n  (n  )2  b Q không phụ thuộc vào Giải x Q  Bài a Chứng minh: a  5b2  (3a  b)  3ab  b Tìm nghiệm nguyên phương trình: a, a2 + 5b – (3a + b)  3ab –  2a2 + 10b2 – 6a -2b – 6ab +10   a2 – 6ab +9b2 + a2 – 6a + + b2 - 2b +1   (a – 3b)2 +(a - 3)2 + (b – 1)2  Dấu « = » xảy a = ; b =1 b, x2  y  x  19  2x2 + 4x + = 21 – 3y2  2(x + 1)2 = 3(7 – y2) (*) Xét thấy VT chia hết 3(7 – y2)   y lẻ (1) Mặt khác VT   3(7 – y2)   y2  (2) Từ (1) (2) suy y2 = thay vào (*) ta có : 2(x + 1)2 = 18 HS tính nghiệm ngun (2 ; 1) ; (2 ; -1) ; (-4 ; -1) ; (4 ; 1) x  y  x  19 giải Bài4 ThuVienDeThi.com Cho tam giác ABC nhọn (AB0; c+a-b=y >0; a+b-c=z >0 Tõ ®ã suy a= y  z ; b  x  z ; c  x  y Thay vµo ta ®ỵc A= ; 2 yz xz x y 1 y x x z y z     (  )  (  )  (  )  2x 2y 2z 2 x y z x z y  Tõ ®ã suy A  (2   2) hay A  Bi4 Cho tam giác ABC , gọi M trung ®iĨm cđa BC Mét gãc xMy b»ng 600 quay quanh điểm M cho cạnh Mx , My cắt cạnh AB AC lần lợt D vµ E Chøng minh : a) BC BD.CE= b) DM,EM lần lợt tia phân giác góc BDE CED c) Chu vi tam giac ADE không đổi Gii a) Trong tam giác BDM ta có : Vì M =600 Suy nên ta cã Mˆ  120  Mˆ E BMD BD CM  BM CE y A x Dˆ  Mˆ Chøng minh Suy : Dˆ  120  Mˆ ∾ CEM (1) D B , tõ ®ã BD.CE=BM.CM ThuVienDeThi.com 2 M C Vì BM=CM= BC , nên ta cã b) (1®) Tõ (1) suy BD MD  CM EM BD.CE= BC mµ BM=CM nªn ta cã BD MD  BM EM Chøng minh BMD ∾ MED Tõ ®ã suy Dˆ  D , DM tia phân giác cđa gãc BDE Chøng minh t¬ng tù ta cã EM tia phân giác góc CED c) Gọi H, I, K hình chiếu M AB, DE, AC Chøng minh DH = DI, EI = EK TÝnh chu vi tam giác 2AH Bài Tìm tất tam giác vuông có số đo cạnh số nguyên duơng số đo diện tích số đo chu vi Gii Gọi cạnh tam giác vuông x , y , z ; cạnh huyền z (x, y, z số nguyên duơng ) Ta có xy = 2(x+y+z) (1) vµ x2 + y2 = z2 (2) Tõ (2) suy z2 = (x+y)2 -2xy , thay (1) vµo ta cã : ThuVienDeThi.com z2 = (x+y)2 - 4(x+y+z) z2 +4z =(x+y)2 - 4(x+y) z2 +4z +4=(x+y)2 - 4(x+y)+4 (z+2)2=(x+y-2)2 , suy z+2 = x+y-2 z=x+y-4 ; thay vào (1) ta đuợc : xy=2(x+y+x+y-4) xy-4x-4y=-8 (x-4)(y-4)=8=1.8=2.4 Từ ta tìm đuợc giá trị x , y , z lµ : (x=5,y=12,z=13) ; (x=12,y=5,z=13) ; (x=6,y=8,z=10) ; (x=8,y=6,z=10) Đề Bài Tìm nghiệm nguyên phương trình: 3xy – x – y + = Giải x2 + 2y2 + Giải phương trình nghiệm nguyên x2 + 2y2 + 3xy - x - y + =   (x + y)(x + 2y - 1) = - Vì x,y nguyên nên x + y x + 2y - ước - ThuVienDeThi.com Ta có bảng sau: x+y -3 -1 x + 2y -3 -1 x -8 -6 y -3 5 -3 Kết luận nghiệm (x; y) (4; 3), (-8;5), (-6; 5), (4; -3) Bài a b c a,    biết abc=1 ab  a  bc  b  ac  c  a2 b2 c2 c b a      b2 c2 a2 b a c b, Giải a, a b c ac abc c      ab  a  bc  b  ac  c  abc  ac  c abc  abc  ac ac  c  = ac  abc  c  abc  ac   1  ac  c c   ac ac  c  abc  ac  b, x=y Áp dụng bất đẳng thức: x2+y2  2xy dấu a2 b2 a b a    ; b c c b c a2 c2 a c c    ; b a b b a Cộng vế ba bất dẳng thức ta có c2 b2 c b b    2 a c a a c a b2 c2 a c b a b2 c2 a c b 2(   )  2(   )       b c a c b a b c a c b a Bài Cho hình vuông ABCD; Trên tia đối tia BA lấy E, tia đối tia CB lấy F cho AE = CF a) Chứng minh  EDF vuông cân b) Gọi O giao điểm đường chéo AC BD Gọi I trung điểm EF Chứng minh ThuVienDeThi.com O, C, I thẳng hàng Cho tam giác ABC vuông cân A Các điểm D, E theo thứ tự di chuyển AB, AC cho BD = AE Xác địnhvị trí điểm D, E cho: a/ DE có độ dài nhỏ b/ Tứ giác BDEC có diện tích nhỏ Giải Chứng minh  EDF vng cân Ta có  ADE =  CDF (c.g.c)   EDF cân D Mặt khác:  ADE =  CDF (c.g.c)  Eˆ  Fˆ Mà Eˆ  Eˆ  Fˆ = 900  Fˆ  Eˆ  Fˆ = 900  EDF = 900 Vậy  EDF vuông cân b)Chứng minh O, C, I thẳng Theo tính chất đường chéo hình vng  CO trung trực BD B Mà  EDF vuông cân  DI = EF 1 2 Tương tự BI = EF 2  DI = BI  I thuộc dường trung trực DB  I thuộc đường thẳng CO D Hay O, C, I thẳng hàng A DE có độ dài nhỏ Đặt AB = AC = a không đổi; AE = BD = x (0 < x < a) Áp dụng định lý Pitago với  ADE vuông A có: DE2 = AD2 + AE2 = (a – x)2 + x2 = 2x2 – 2ax + a2 = 2(x2 – ax) – a2 = 2(x – a )2 + a  a 2 2 ThuVienDeThi.com C E Ta có DE nhỏ  BD = AE =a   DE2 nhỏ  x =a D, E trung điểm AB, AC b,Tứ giác BDEC có diện tích nhỏ Ta có: SADE = AD.AE = AD.BD = AD(AB – AD)= 2 (AD2 – AB.AD) = – (AD2 – AB AD + AB2  AB2 )+ AB2 Vậy SBDEC = SABC – SADE  đổi = – (AD – AB2 2 AB2 – AB ) + AB2 = AB2 không Do SBDEC = AB2 D, E trung điểm AB, AC Bài Cho A = Đề  x  x  x  4x   x  2014      x2  x   x 1 x 1 (với x  0; x  1; x  1 ) 1) Rút gọn A 2) Với giá trị nguyên x A có giá trị ngun? 1, Với x  0; x  1; x  1 Giải ta có  x  x  x  4x   x  2014 x  1  x  1  x  4x  x  2014     A  x2 1  x  x2 1 x 1  x 1 x 1 4x  x  4x  x  2014 x  x  2014 x  2014      x2 1 x 1 x 1 x 1 x 1 x  2014 2013 2) Ta có A   1 x 1 x 1 ThuVienDeThi.com Suy với x ngun A có giá trị nguyên x + ước 2013 Ước 2013 gồm -2013;-671; -183; -61; -33; -11; -3; -1; 1; 3; 11; 33; 61; 183; 671; 2013 Từ tìm đối chiếu điều kiện ta có với x nhận giá trị -2014; -672; -184; -62; -34; -12; -4; -2; 2; 10; 32; 60; 182; 670; 2012 A nhận giá trị nguyên Bài 1) Phân tích đa thức sau thành nhân tử: a x2  x  b x  2008 x  2007 x  2008 2) Chứng minh a, b, c độ dài ba cạnh tam giác A = 4a2b2 – (a2 + b2 - c2)2 luôn dương Giải 1) a x  x   x  x  x   x x  1  x  1  x  1x   b x  2008 x  2007 x  2008  x  x  2007 x  2007 x  2007   x  x   2007 x  x  1 x  1  x  2007 x  x  1  x  x  1x  x  1 2007 x  x  1 x  x  1x  x  2008  2) Ta có A = [2ab + (a2 + b2 - c2)][2ab – (a2 + b2 - c2)] = [(a + b)2 – c2][c2 – (a – b)2] = (a + b + c)(a + b – c)(c + b – a)(c + a – b) Do a, b, c ba cạnh tam giác nên a, b, c > theo bất đẳng thức tam giác ta có a + b – c > 0; c + b – a > 0; c + a – b > từ suy điều phải chứng minh Bài 1) Cho x, y thoả mãn xy  Chứng minh rằng: ThuVienDeThi.com 1   2 1 x 1 y  xy 2) Tìm số nguyên x, y thỏa mãn: x2  y2  4 x2 cho tích x.y đạt giá trị lớn Giải 1 1)  x   y   xy (1) x y  x y x  y   1   1      0  0 2 1  x 1  xy  1  y 1  xy    x  xy    y  xy   y  x  xy  1     1  x 1  y 1  xy  Vì x  1; y  => xy  => xy    BĐT (2) => BĐT (1) (dấu ‘’=’’ xảy x = y) 2) x2  12  y    x     x  y   xy   xy  2 x  x  2 Dấu xảy (x;y)  1; ; 1; 2  Kết luận Bài Cho tam giác ABC, cạnh BC lấy điểm M, Qua điểm M kẻ đường thẳng song song với AC AB thứ tự cắt AB AC E F 1)Chứng minh ME MF  AC AB có giá trị khơng đổi ThuVienDeThi.com ... S AHC  Dấu ‘=’ S BHC S BHC S AHC S AHC S BHA S BHA HE SCHE tam giác ABC đều, mà theo gt AB < AC nên khơng xảy dấu Đề Bài Cho P= a  4a  a  a  a  14a  a) Rót gọn P b) Tìm giá trị nguyên... k  1 2  x   t x  + Víi x = th× (2y + 1) = m·n pt)  x  y = hc y = -1.(Thỏa ThuVienDeThi.com Vậy nghiệm phơng trình là: (x;y) Bài ( điểm) Cho hình vuông ABCD, độ dài cạnh a Một điểm... AM AC AB AC Cã  MAF =  BAC = 45 0(2) => Tõ vµ =>  AFM   ABC =>  AFM = ABC = 90o ThuVienDeThi.com C/M hoàn toàn tơng tự cã  AEN = 900 v× vËy  AFM =  AEN = 90o S  AEF = 1/2 S  AMN (2

Ngày đăng: 31/03/2022, 07:27

HÌNH ẢNH LIÊN QUAN

Cho hình vuông ABCD, độ dài các cạnh bằng a. Một điểm M chuyển động trên    cạnh DC (M D, M C) chọn điểm N trên cạnh  - Đề  đáp án thi HSG Toán 842893
ho hình vuông ABCD, độ dài các cạnh bằng a. Một điểm M chuyển động trên cạnh DC (M D, M C) chọn điểm N trên cạnh  (Trang 4)
Ta cú bảng sau: - Đề  đáp án thi HSG Toán 842893
a cú bảng sau: (Trang 16)
w