1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn

23 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,08 MB

Nội dung

1 Mở đầu 1.1 Lí chọn đề tài Như ta biết Bộ Giáo dục từ năm học 2016-2017 định chuyển đổi hình thức thi mơn Tốn từ tự luận sang trắc nghiệm, nghĩa phạm vi kiến thức độ rộng vấn đề, câu hỏi cịn xốy vào nhiều khía cạnh khác với nhiều cách hỏi khác giả thiết ngày xuất câu hỏi mới, lạ hóc búa Chỉ xét riêng chương Giải tích lớp 12, chương có nhiều vấn đề quan trọng rộng, xuyên suốt mạch kiến thức hình học lẫn giải tích chương khác Nhiều học sinh cảm thấy kiến thức mênh mơng biển sở, khơng thâu tóm vấn đề từ chán nãn tự tin trình học tập Bản thân giáo viên dạy lớp 12A1 12A12 trường THPT Yên Định 1, đối tượng học sinh chủ yếu học sinh có học lực mức điều thuận lợi Tuy nhiên học sinh đứng trước vấn đề việc học cuối cấp em nhiều, em vừa phải học ôn thi đại học vừa phải học môn ôn thi tốt nghiệp nên thời gian hạn chế Do học sinh khó có khái quát, tổng hợp vấn đề từ khó hiểu chất tốn điều dẫn đến tình trạng học trước quên sau rơi vào tình trạng bị loạn kiến thức, yếu kĩ Chính thân tơi trăn trở với khó khăn mà em gặp phải Làm để hệ thống kiến thức, phương pháp giải để giúp em hệ thống mạch kiến thức từ giúp học sinh bớt khó khăn trình ơn tập Chính thân tơi lựa chọn đề tài để thực là: “Rèn luyện tư cho học sinh khối 12 thông qua hệ thống tập vận dụng cao chủ đề hàm số ẩn” Đó tên đề tài mà tơi chọn để nghiên cứu 1.2 Mục đích nghiên cứu Phân loại phân dạng tập phát triển tư cho học sinh theo vấn đề khác rèn luyện kĩ giải toán theo vấn đề giúp học sinh hệ thống kiến thức để ôn tập tốt phần hàm số chương trình lớp 12 từ tạo hứng thú, động lực phương pháp để em ôn tập tốt chương sau 1.3 Đối tượng nghiên cứu Đề tài viết mảng kiến thức phần hàm số thuộc chương trình giải tích lớp 12 THPT hướng tới đối tượng học sinh 12A1,12A12 có học lực từ trung bình đến khá, giỏi trường THPT Yên Định 1.4 Phương pháp nghiên cứu Phương pháp thực hành: Soạn thiết kế chuyên đề theo phương pháp định hướng lực, tiến hành thực nghiệm lớp 12A1,12A12 năm học 20187-2019 Sử dụng phương pháp giảng giải, phương pháp hợp đồng làm việc, phương pháp thực nghiệm (nghiên cứu trực tiếp giảng dạy lớp 12A1, 12A12) Ngoài sử dụng phương pháp: - Phương pháp quan sát (công việc dạy-học giáo viên học sinh) - Phương pháp đàm thoại, vấn (lấy ý kiến giáo viên học sinh thông qua trao đổi trực tiếp) Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Theo triết học vật biện chứng, mâu thuẫn động lực thúc đẩy trình phát triển Con người bắt đầu tư tích cực nảy sinh nhu cầu tư duy, đứng trước khó khăn cần phải khắc phục Để giúp em học sinh học tập tốt hơn, người giáo viên cần tạo cho học sinh hứng thú học tập Cần cho học sinh thấy nhu cầu nhận thức quan trọng, người muốn phát triển cần phải có tri thức, cần phải học hỏi tổng hợp kiến thức cho riêng Theo luật giáo dục Việt Nam có viết: “Phương pháp giáo dục phổ thông cần phát huy tính tích cực, tự giác, chủ động sáng tạo học sinh, phù hợp với đặc điểm lớp học, môn học, bồi dưỡng phương pháp tự học, rèn luyện kĩ vận dụng kiến thức, tác động đến tính cảm, đem lại niềm vui, hứng thú học tập học sinh” 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm download by : skknchat@gmail.com Hình thức thi trắc nghiệm mơn Tốn với toán liên quan đến hàm số cụ thể học sinh bấm máy tính để chọn đáp án, chất kiến thức tốn khơng áp dụng Chính giáo dục đào tạo xây dựng đề thi trọng nhiều dạng toán học sinh phải vận dụng chất kiến thức Toán vào thi Ban đầu gặp dạng toán hàm số mức độ sách giáo khoa Giải Tích 12 Nâng Cao học sinh suy luận Khi toán mức độ yêu cầu vận dụng học sinh lúng túng khơng có định hướng giải toán cách chủ động Đề thi THPT Quốc Gia năm học 2016-2017, 2017-2018, đề minh họa năm học 20172018,2018-2019 có câu hàm số ẩn mức độ vận dụng chí mức độ vận dụng cao Trong trình giảng dạy học sinh tơi nhận thấy em cịn gặp nhiều khó khăn cách nhận dạng, phương pháp giải kĩ giải Kiến thức rộng, câu hỏi đa dạng, có rải rác đề thi thử trường, khó tổng hợp Nhiều học sinh cảm thấy chán nãn mệt mỏi 2.3 Giải vấn đề PHẦN I TÍNH ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ Loại Cho đồ thị, bảng biến thiên Hỏi khoảng đơn điệu hàm số A Phương pháp giải: Bước 1: Tính Bước 2: Giải bất phương trình Bước 3: Dựa vào đồ thị bảng biến thiên hàm số kết luận tập nghiệm Từ khoảng đơn điệu hàm số B Bài tập vận dụng: Ví dụ 1: (Cho đồ thị) Cho hàm số số A C Đồ thị hàm số hình bên Hàm nghịch biến khoảng khoảng sau? B D Lời giải Dựa vào đồ thị, suy download by : skknchat@gmail.com Xét Ta có nghịch biến khoảng Chọn C Vậy Ví dụ 2: Cho hàm số Mệnh đề sai ? Đồ thị hàm số A Hàm số đồng biến khoảng B Hàm số nghịch biến khoảng C Hàm số nghịch biến khoảng D Hàm số nghịch biến khoảng hình bên Đặt Lời giải Ta có Bảng biến thiên Dựa vào bảng biến thiên đối chiếu với đáp án, ta chọn C Ví dụ 3: (Cho bảng biến thiên) Cho hàm số có bảng biên thiên hình vẽ download by : skknchat@gmail.com Hàm số nghịch biến khoảng khoảng sau ? A B C D Lời giải Dựa vào bảng biến thiên, suy Ta có Xét   Đối chiếu đáp án, ta chọn C Loại 2: Cho đồ thị Hỏi khoảng đơn điệu hàm số A Phương pháp giải: Bước 1: Tính Bước 2: Vẽ đồ thị hệ trục tọa độ download by : skknchat@gmail.com Bước 3: Dựa vào vị trí tương đối hai đồ thị để kết luận B Bài tập vận dụng Ví dụ 1: Cho hàm số bên Đặt có đạo hàm liên tục Đồ thị hàm số hình khẳng định sau ? A B C D Lời giải Ta có Số nghiệm phương trình đường thẳng số giao điểm đồ thị hàm số (như hình vẽ bên dưới) Dựa vào đồ thị, suy Bảng biến thiên Dựa vào bảng biến thiên Chọn C download by : skknchat@gmail.com Ví dụ 2: Cho hàm số bên có đạo hàm liên tục Hàm số Đồ thị hàm số hình đồng biến khoảng khoảng sau ? A B C D Lời giải Ta có Số nghiệm phương trình đường thẳng số giao điểm đồ thị hàm số (như hình vẽ bên dưới) Dựa vào đồ thị, suy Lập bảng biến thiên (hoặc ta thấy với đường thẳng Loại nên Cho biểu thức hàm số đồ thị hàm số đồng biến Hỏi khoảng đơn điệu hàm số A Phương pháp giải Bước 1: Tìm đạo hàm hàm số Bước 2: Tìm hàm số Bước 3: Giải bất phương trình cách thay x B Bài tập vận dụng download by : skknchat@gmail.com nằm phía Chọn B Ví dụ 1: Cho hàm số có đạo hàm với Hàm số đồng biến khoảng khoảng sau ? A B C D Lời giải Ta có Xét Chọn B Ví dụ 2: Cho hàm số có đạo hàm với Hàm số đồng biến khoảng khoảng sau ? A Lời B giải C Ta D có Bảng biến thiên Dựa vào bảng biến thiên đối chiếu với đáp án, ta chọn D Loại Cho biểu thức Tìm để hàm số đồng biến, nghịch biến A Phương pháp giải Bước 1: Tìm đạo hàm hàm số Bước 2: Giải bất phương trình B Bài tập vận dụng download by : skknchat@gmail.com Ví dụ 1: Cho hàm số số nguyên có đạo hàm với để hàm số Có đồng biến khoảng A B ? C D Lời giải Ta có Để hàm số Xét đồng biến khoảng Vậy Ví dụ 2: Cho hàm số có đạo hàm số nguyên dương A Chọn B với để hàm số B đồng biến khoảng C Có ? D Lời giải Chọn B Từ giả thiết suy Để hàm số Ta có Ta có đồng biến khoảng Vậy Loại Cho bảng xét dấu đạo hàm Tìm khoảng đơn điệu hàm số Phương pháp giải download by : skknchat@gmail.com suy - Đây dạng tốn xét tính đơn điệu hàm số cho cơng thức ta biết dấu Hướng giải tính đạo hàm dấu hàm cụ thể , từ dấu ta đưa kết luận phù hợp với tốn Bài tập vận dụng Ví dụ Cho hàm số có bảng xét dấu đạo hàm sau: Hàm số nghịch biến khoảng đây? A B C Lời giải Ta có Xét dấu ta có bảng: Suy hàm số nghịch biến khoảng Ví dụ Cho hàm số Do ta chọn D có bảng xét dấu đạo hàm sau: Hàm số A D nghịch biến khoảng đây? B C download by : skknchat@gmail.com D Lời giải: Ta có Xét dấu ta có bảng: Suy hàm số nghịch biến khoảng Do ta chọn D PHẦN II: CỰC TRỊ CỦA HÀM SỐ Loại Cho đồ thị Hỏi số điểm cực trị hàm số A Phương pháp giải Để giải dạng tập học sinh cần nắm cách tìm khoảng đơn điệu hàm số B Bài tập vận dụng Dạng 1: Số điểm cực trị hàm số khơng chứa giá trị tuyệt đối Ví dụ 1: Đường cong hình vẽ bên đồ thị hàm số hàm số Số điểm cực trị A B C Lời giải Ta thấy đồ thị hàm số cắt thực hai điểm qua có D điểm chung với trục hồnh Nghiệm nghiệm bội chẵn phương trình khơng đổi dấu Bảng biến thiên download by : skknchat@gmail.com Vậy hàm số có điểm cực trị Chọn A Nhận xét: Số điểm cực trị hàm số số nghiệm bội lẻ phương trình f  x Dạng 2: Số điểm cực trị hàm số chứa dấu giá trị tuyệt đối Phương pháp giải: Để giải toán loại học sinh cần nắm vững cách vẽ đồ thị hàm số chứa dấu giá trị tuyệt đối biết biến đổi đồ thị Nắm vững kết sau: - Số điểm cực trị hàm số số điểm cực trị hàm số số nghiệm bội lẻ phương trình - Số điểm cực trị hàm số cộng hai lần số điểm cực trị dương hàm số cộng - Số điểm cực trị hàm số số điểm cực trị hàm số - Số điểm cực trị hàm số số điểm cực trị hàm số , - Số điểm cực trị hàm số dạng cực trị n hàm số f  x f  x f  x 2m  2q  Trong đó: n số điểm , m số điểm cực trị dương (với m  n ) hàm số , q số giao điểm đồ thị hàm số với trục hồnh có q điểm có hồnh độ dương Ví dụ 1: Cho hàm số Đồ thị hàm số hình vẽ bên download by : skknchat@gmail.com Hỏi hàm số có điểm cực trị ? A B C Lời giải Từ đồ thị hàm số ta thấy (và có điểm có hồnh độ âm) D cắt trục hồnh điểm có hồnh độ dương điểm cực trị dương Suy có điểm cực trị có điểm cực trị (vì tịnh tiến lên hay xuống khơng ảnh hưởng đến số điểm cực trị hàm số) Chọn C Ví dụ 2: Cho hàm số Đồ thị hàm số Có giá trị nguyên tham số A (và để hàm số B Lời giải Từ đồ thị hàm số hình vẽ bên có C ta thấy điểm có hồnh độ âm) có điểm cực trị ? D Vơ số cắt trục hồnh điểm có hồnh độ dương điểm cực trị dương Suy có điểm cực trị có điểm cực trị với (vì tịnh tiến sang trái hay sang phải khơng ảnh hưởng đến số điểm cực trị hàm số) Chọn D Ví dụ 3: Cho hàm số Đồ thị hàm số Có giá trị nguyên tham số để hàm số hình vẽ bên có download by : skknchat@gmail.com điểm cực trị ? A B Lời giải Từ đồ thị C ta có Yêu cầu tốn D Vơ số Suy bảng biến thiên hàm số có ta đồ thị hàm số có Từ bảng biến thiên suy điểm cực trị dương (vì lấy đối xứng qua điểm cực trị) ln có điểm cực trị dương tịnh tiến (sang trái sang phải) phải thỏa mãn  Tịnh tiến sang trái nhỏ đơn vị  Tịnh tiến sang phải không vượt đơn vị Suy Chọn B Ví dụ 4: Cho hàm số có đạo hàm số nguyên A để hàm số B Lời giải Do tính chất đối xứng qua trục tốn có với có C điểm cực trị ? D đồ thị hàm thị hàm số điểm cực trị dương Xét Do Có có hai nghiệm dương phân biệt Chọn B download by : skknchat@gmail.com nên yêu cầu a  b   f  x   x  ax  bx  Ví dụ Cho hàm số thỏa mãn 3  2a  b  Số điểm cực trị hàm số y f  x A 11 B C D Lời giải: Chọn A Hàm số y  f  x (là hàm số bậc ba) liên tục  f    2  f  1   a  b   f    2a  b   Ta có , lim f  x    x  nên , x0  2; f  x0   f  x  Do đó, phương trình Hàm số y f  x Vậy hàm số Ví dụ Cho hàm số A có nghiệm dương phân biệt  y f  x có điểm cực trị có 11 điểm cực trị Loại Cho bảng biến thiên hàm Hàm số hàm số chẵn Do đó, hàm số y f  x Hỏi số điểm cực trị hàm xác định, liên tục có bảng biến thiên sau đạt cực tiểu điểm sau ? B C D Lời giải Ta có Do điểm cực tiểu hàm số Vậy điểm cực tiểu hàm số Ví dụ Cho hàm số trùng với điểm cực tiểu hàm số Chọn C có bảng biến thiên hình vẽ bên download by : skknchat@gmail.com Hỏi hàm số có điểm cực trị ? A B C D Lời giải Ta có Vậy có nghiệm bội lẻ Loại Cho đồ thị A điểm cực trị Chọn B có đồ thị hình vẽ bên Tất giá trị thực để hàm số có B điểm cực trị Lời giải Nhận xét: Số điểm cực trị hàm số  số điểm cực trị hàm  số giao điểm Áp dụng: Vì hàm có Hỏi số điểm cực trị hàm số Ví dụ Cho hàm bậc ba tham số nên hàm số C với với trục hồnh (khơng tính điểm trùng với cho có điểm cực trị nên D ln có download by : skknchat@gmail.com trên) điểm cực trị Do yêu cầu toán số giao điểm đồ thị Để số giao điểm đồ thị  Tịnh tiến đồ thị với trục hoành với trục hoành , ta cần xuống tối thiểu đơn vị  Hoặc tịnh tiến đồ thị Chọn A lên tối thiểu Loại Cho biểu thức Tìm đơn vị để hàm số Ví dụ Hàm số có ba điểm cực trị có điểm cực trị ? A Lời B giải Vì Từ giả Vậy có điểm cực trị Hàm số C thiết suy D Ta có hai nghiệm đơn nghiệm bội lẻ nên Ví dụ Cho hàm số giá trị A có với để hàm số B có có điểm cực trị Chọn A tham số thực Tìm tất điểm cực trị C D Lời giải Chọn C Hàm số có điểm cực trị hàm số Ta có có hai cực trị dương có hai nghiệm dương phân biệt PHẦN 3: TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CĨ NGHIỆM HOẶC NGHIỆM ĐÚNG TRÊN TẬP K CHO TRƯỚC download by : skknchat@gmail.com Loại Tìm điều kiện để bất phương trình nghiệm D A Phương pháp giải Bước 1: Cô lập tham số m đưa bốn dạng sau Bước 2: Khảo sát hàm số D Bước 3: Tìm max D Bước 4: Dựa vào đặc điểm toán kết luận tham số m Lưu ý: Xét bất phương trình Trong trường hợp liên tục Trong trường hợp với đơn điệu ( khơng đổi dấu ) u cầu tốn trở thành hàm đạt giá trị lớn điểm u cầu tốn trở thành B Bài tập vận dụng Ví dụ (Đề minh họa 2019) Cho hàm số sau Bất phương trình Hàm số với B A có bảng biến thiên C D Lời giải Ta có: Xét hàm số , ta có: download by : skknchat@gmail.com Dựa vào bảng biến thiên ta thấy , Hàm số , nê nghịch biến Suy ra: liên tục Do đó: Loại 2: Tìm điều kiện để phương trình có nghiệm D A Phương pháp giải Bước 1: Cô lập tham số m đưa dạng sau Bước 2: Đặt đánh giá chặt Bước 3: Khảo sát hàm số K Bước 4: Tìm max K Bước 5: Dựa vào đặc điểm toán kết luận tham số m B Bài tập vận dụng Ví dụ Cho hàm số nguyên tham số A xác định có đồ thị hình bên Có giá trị để phương trình: B có nghiệm C Lời giải Đặt D Do phương trình có nghiệm đoạn có nghiệm Dựa vào đồ thị cho ta thấy: phương trình Vậy phương trình có nghiệm download by : skknchat@gmail.com với PHẦN TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ Bài tốn: Tìm tiệm cận thơng qua đồ thị hàm số bảng biến thiên Phương pháp: Học sinh nắm vững khái niệm cách tìm tiệm cận đứng tiệm cận ngang đồ thị hàm số cụ thể: Bài tập vận dụng: Ví dụ 1: Cho hàm số bậc ba có đồ thị hình vẽ Đồ thị hàm số có tất đường tiệm cận đứng? A B C D Lời giải: hai tiệm cận đứng Do rút gọn Ví dụ 2: Cho hàm số thị hàm số Vậy đồ thị có có bảng biến thiên hình vẽ Tìm tất giá trị m để đồ có ba đường tiệm cận đứng? A B C D Lời giải: Xét phương trình Vì tử ln khác khơng với x nên để đồ thị hàm số có đường tiệm cận đứng phương trình có nghiệm phân biệt Ví dụ 3: Cho hàm số bậc ba Chọn C có bảng biến thiên hình vẽ Đồ thị hàm số có đường tiệm cận đứng? download by : skknchat@gmail.com A B C D Lời giải: Phương trình Phương trình số có đường tiệm cận đứng Chọn D Vậy đồ thị hàm 2.4 Hiệu SKKN Sau thời gian ôn luyện thi THPT Quốc Gia năm học Trong trình tham khảo đề thi : THPT Quốc Gia năm 2017, 2018; Các đề minh họa năm học, tài liệu liên quan mạng Quá trình tìm hiểu khó khăn học sinh giải dạng tốn hàm ẩn Bản thân tơi suy nghĩ nghiên cứu tìm giải pháp tháo gỡ khó khăn cho học sinh , khắc phục lối dạy học truyền thụ chiều, rèn luyện nếp tư cho người học Do tơi xây dựng đề tài cho học sinh lớp 12 Định hướng phát huy tính tích cực, tự giác, chủ động sáng tạo học sinh; bồi dưỡng khả tự học, sáng tạo; khả vận dụng kiến thức vào thực tế; đem lại say mê, hứng thú học tập cho em Tôi mong đề tài đồng nghiệp, người đam mê dạy học toán ghi nhận giới thiệu rộng rãi, góp phần đổi phương pháp giảng dạy phù hợp với thực tiễn thay đổi toàn diện ngành giáo dục Lớp Sĩ số 12A1 12A12 44 44 Tỉ lệ điểm Giỏi 25% 12% Khá 25% 37% TB 27% 46% Yếu 23% 5% - Được đồng nghiệp đánh giá cao Một số thầy, cô giáo trường dạy khối 12 áp dụng vào giảng dạy thu hiệu tích cực Kết luận, kiến nghị 3.1 Kết luận: Bài viết thể rõ ràng ý tưởng tơi Mong ý tưởng có ích cho thầy, cô giáo việc soạn dạy ôn tập cho học sinh 3.2 Kiến nghị: - Đối với nhà trường: Nhà trường tạo điều kiện trang thiết bị dạy học, để giáo viên có điều kiện tìm tịi thực phương pháp dạy học download by : skknchat@gmail.com - Đối với tổ, nhóm chun mơn: Tăng cường trao đổi chun mơn, đặc biệt thành viên nhóm chun mơn tích cực chia sẻ phương pháp dạy học, phương pháp giải tập mới, hiệu để đồng nghiệp trao đổi, đánh giá, hoàn thiện vận dụng vào dạy học XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 20 tháng năm 2019 Tơi xin cam đoan sáng kiến kinh nghiệm viết, không chép nội dung người khác Người viết SKKN Mạch Quang Tài download by : skknchat@gmail.com TÀI LIỆU THAM KHẢO Đề thi thử trường THPT, sở GD&ĐT nước năm học 2016 – 2017 2017 – 2018 Các đề minh họa, đề thi BGD năm học 2016 – 2017 2017 – 2018 218 tập hàm ẩn, trang Diễn đàn toán học download by : skknchat@gmail.com DANH MỤC CÁC ĐỀ TÀI SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP SỞ GD&ĐT VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Mạch Quang Tài Chức vụ đơn vị công tác: Giáo viên trường THPT Yên Định 1- Yên Định- Thanh Hóa TT Tên đề tài SKKN Cấp đánh giá xếp loại Kết đánh giá xếp loại Năm học đánh giá xếp loại Các phương pháp sử dụng bất đẳng thức Cô si Sở GD&ĐT để giải toán bất đẳng thức C 2006-2007 Sử dụng phương pháp véc tơ để giải tốn hình Sở GD&ĐT học lớp 11 B 2008-2009 Rèn luyện kĩ tính góc khơng gian Sở GD&ĐT B 2015-2016 Hình thành phương pháp rèn luyện tư cho học sinh thơng qua tốn tính khoảng cách không gian Sở GD&ĐT B 2016-2017 * Liệt kê tên đề tài theo thứ tự năm học, kể từ tác giả tuyển dụng vào Ngành thời điểm download by : skknchat@gmail.com ... khó khăn học sinh giải dạng tốn hàm ẩn Bản thân suy nghĩ nghiên cứu tìm giải pháp tháo gỡ khó khăn cho học sinh , khắc phục lối dạy học truyền thụ chiều, rèn luyện nếp tư cho người học Do xây... tơ để giải tốn hình Sở GD&ĐT học lớp 11 B 2008-2009 Rèn luyện kĩ tính góc khơng gian Sở GD&ĐT B 2015-2016 Hình thành phương pháp rèn luyện tư cho học sinh thơng qua tốn tính khoảng cách không... cho học sinh lớp 12 Định hướng phát huy tính tích cực, tự giác, chủ động sáng tạo học sinh; bồi dưỡng khả tự học, sáng tạo; khả vận dụng kiến thức vào thực tế; đem lại say mê, hứng thú học tập

Ngày đăng: 29/03/2022, 22:10

HÌNH ẢNH LIÊN QUAN

Hình thức thi trắc nghiệm môn Toán với những bài toán liên quan đến hàm số cụ thể học sinh bấm máy tính để chọn đáp án, do đó bản chất kiến thức toán không được áp dụng - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
Hình th ức thi trắc nghiệm môn Toán với những bài toán liên quan đến hàm số cụ thể học sinh bấm máy tính để chọn đáp án, do đó bản chất kiến thức toán không được áp dụng (Trang 2)
Ví dụ 2: Cho hàm số Đồ thị hàm số như hình bên. Đặt Mệnh đề nào dưới đây sai ? - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 2: Cho hàm số Đồ thị hàm số như hình bên. Đặt Mệnh đề nào dưới đây sai ? (Trang 3)
Lời giải. Dựa vào bảng biến thiên, suy ra và - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
i giải. Dựa vào bảng biến thiên, suy ra và (Trang 4)
Ví dụ 2: Cho hàm số có đạo hàm liên tục trên Đồ thị hàm số như hình bên dưới - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 2: Cho hàm số có đạo hàm liên tục trên Đồ thị hàm số như hình bên dưới (Trang 6)
Bảng biến thiên - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
Bảng bi ến thiên (Trang 7)
Loại 5. Cho bảng xét dấu của đạo hàm. Tìm khoảng đơn điệu của hàm số Phương pháp giải - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
o ại 5. Cho bảng xét dấu của đạo hàm. Tìm khoảng đơn điệu của hàm số Phương pháp giải (Trang 8)
Ví dụ 1. Cho hàm số có bảng xét dấu của đạo hàm như sau: - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 1. Cho hàm số có bảng xét dấu của đạo hàm như sau: (Trang 9)
dấu của và ta có bảng: - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ấu của và ta có bảng: (Trang 10)
Ví dụ 1: Đường cong trong hình vẽ bên dưới là đồ thị hàm số Số điểm cực trị của hàm số  là  - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 1: Đường cong trong hình vẽ bên dưới là đồ thị hàm số Số điểm cực trị của hàm số là (Trang 10)
Ví dụ 1: Cho hàm số Đồ thị của hàm số như hình vẽ bên dưới - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 1: Cho hàm số Đồ thị của hàm số như hình vẽ bên dưới (Trang 11)
Ví dụ 2: Cho hàm số Đồ thị hàm số như hình vẽ bên dưới - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 2: Cho hàm số Đồ thị hàm số như hình vẽ bên dưới (Trang 12)
Ví dụ 3: Cho hàm số Đồ thị hàm số như hình vẽ bên dưới. - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 3: Cho hàm số Đồ thị hàm số như hình vẽ bên dưới (Trang 12)
Lời giải. Từ đồ thị ta có Suy ra bảng biến thiên của - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
i giải. Từ đồ thị ta có Suy ra bảng biến thiên của (Trang 13)
Từ bảng biến thiên của suy ra luôn có điểm cực trị dương tịnh tiến  (sang trái hoặc sang phải) phải thỏa mãn - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
b ảng biến thiên của suy ra luôn có điểm cực trị dương tịnh tiến (sang trái hoặc sang phải) phải thỏa mãn (Trang 13)
Loại 2. Cho bảng biến thiên của hàm Hỏi số điểm cực trị của hàm - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
o ại 2. Cho bảng biến thiên của hàm Hỏi số điểm cực trị của hàm (Trang 14)
Ví dụ (Đề minh họa 2019). Cho hàm số. Hàm số có bảng biến thiên như sau - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ (Đề minh họa 2019). Cho hàm số. Hàm số có bảng biến thiên như sau (Trang 17)
Ví dụ. Cho hàm số xác định trên và có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số   để phương trình:  có nghiệm. - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ. Cho hàm số xác định trên và có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số để phương trình: có nghiệm (Trang 18)
Ví dụ 1: Cho hàm số bậc ba có đồ thị như hình vẽ dưới. Đồ thị hàm số  có tất cả bao nhiêu đường tiệm cận đứng? - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
d ụ 1: Cho hàm số bậc ba có đồ thị như hình vẽ dưới. Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận đứng? (Trang 19)
CÁC ĐỀ TÀI SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP SỞ GD&ĐT VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN. - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
amp ;ĐT VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN (Trang 23)
Hình thành phương pháp và rèn luyện tư duy cho học sinh thông qua các bài toán tính - (SKKN mới NHẤT) SKKN rèn luyện tư duy học sinh lớp 12 thông qua hệ thống bài tập hàm ẩn
Hình th ành phương pháp và rèn luyện tư duy cho học sinh thông qua các bài toán tính (Trang 23)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w