Một số bài toán về dãy số

15 1.3K 0
Một số bài toán về dãy số

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

1 Một số bài toán về dãy số Nguyễn Thành Giáp Trường Đại học Khoa học Tự nhiên; Khoa Toán - Cơ - Tin học Chuyên ngành: Phương pháp toán cấp; Mã số: 60 46 40 Người hướng dẫn : TS. Phạm Văn Quốc Năm bảo vệ: 2011 Abstract. Hệ thống hóa kiến thức cơ bản về dãy số, số học, phương pháp sai phân sẽ được dùng để giải quyết các bài toán trong các chương sau. Trình bày một số vấn đề về tính chất số học của dãy số như tính chia hết, tính nguyên, tính chính phương…và nêu ra các phương pháp giải toán, phân tích các bài toán cụ thể. Đề cập đến một số bài toán về giới hạn dãy số như: giới hạn của tổng, dãy con và sự hội tụ của dãy số, dãy số xác định bởi phương trình cùng với phương pháp giải cụ thể cho từng dạng toán Keywords. Toán học; Toán cấp; Dãy số; Số học Content. MỞ ĐẦU Dãy sốmột lĩnh vực khó và rất rộng, trong các đề thi học sinh giỏi quốc gia, quốc tế cũng thường xuất hiện các bài toán về dãy số. Để giải được các bài toán về dãy số đòi hỏi người làm toán phải có kiến thức tổng hợp về số học, đại số, giải tích. Các vấn đề liên quan đến dãy số cũng rất đa dạng và cũng có nhiều tài liệu viết về vấn đề này, các tài liệu này cũng thường viết khá rộng về các vấn đề của dãy số, các vấn đề được quan tâm nhiều hơn là các tính chất số hoc và tính chất giải tích của dãy số. Tính chất số học của dãy số thể hiện như tính chia hết, tính nguyên, tính chính phương… , tính chất giải tích có nhiều dạng nhưng quan trọng là các bài toán tìm giới hạn dãy số. Các bài toán về dãy số thường là các bài toán hay và khó, tác giả luận văn đã sưu tầm, chọn lọc và phân loại theo từng chủ đề Luận văn với đề tài “Một số bài toán về dãy số” có mục đích trình bày một cách hệ thống, chi tiết tính chất số học của dãy số, giới hạn dãy số. Luận văn được trình bày với 3 chương. 2 Chƣơng 1. Một số kiến thức chuẩn bị. Chương này hệ thống lại kiến thức cơ bản nhất về dãy số, số học, phương pháp sai phân sẽ được dùng để giải quyết các bài toán trong các chương sau. Chƣơng 2. Tính chất số học của dãy số. Chương này trình bày một số vấn đề về tính chất số học của dãy số như tính chia hết, tính nguyên, tính chính phương… và nêu ra các phương pháp giải toán, phân tích các bài toán cụ thể. Chƣơng 3. Giới hạn của dãy số. Chương này đề cập đến một số bài toán về giới hạn dãy số như: Giới hạn của tổng, dãy con và sự hội tụ của dãy số, dãy số xác định bởi phương trình cùng với phương pháp giải cụ thể cho từng dạng toán. Chƣơng 1 MỘT SỐ KIẾN THỨC CHUẨN BỊ 1.1.DÃY SỐ 1.1.1.Định nghĩa Mỗi hàm số u xác định trên tập các số nguyên dương N* được gọi là một dãy số vô hạn (gọi tắt là dãy số). Kí hiệu: u: N*  R n  u(n) Dãy số thường được viết dưới dạng khai triển u 1 , u 2 , u 3 ,…, u n , … Trong đó u n = u(n) và gọi u 1 là số hạng đầu, u n là số hạng thứ n và là số hạng tổng quát của dãy số Mỗi hàm số u xác định trên tập M = {1,2,3,…, m} với m  N* được gọi là một dãy số hữu hạn Dạng khai triển của nó là u 1 , u 2 , u 3 ,…,u m trong đó u 1 là số hạng đầu, u m là số hạng cuối. 1.1.2. Cách cho một dãy số - Dãy số cho bằng công thức của số hạng tổng quát - Dãy số cho bằng phương pháp truy hồi - Dãy số cho bằng phương pháp mô tả: 1.1.3. Một vài dãy số đặc biệt a) Cấp số cộng. 3 Định nghĩa. Dãy số u 1 , u 2 , u 3 , … được gọi là một cấp số cộng với công sai d (d  0) nếu u n = u n – 1 + d với mọi n = 2, 3, … b)Cấp số nhân. Định nghĩa Dãy số u 1 , u 2 , u 3 , … được gọi là một cấp số nhân với công bội q (q  0, q  1) nếu u n = u n – 1 q với mọi n = 2, 3, … c)Dãy Fibonacci. Định nghĩa. Dãy u 1 , u 2 ,… được xác định như sau: 12 12 1, 1 3,4 n n n uu u u u n          được gọi là dãy Fibonacci. Bằng phương pháp sai phân có thể tìm được công thức tổng quát của dãy là: 1 1 5 1 1 5 22 55 nn n u                   1.1.4 Giới hạn của dãy số Định nghĩa. Ta nói rằng dãy số (u n ) có giới hạn là hằng số thực a hữu hạn nếu với mọi số dương  (có thể bé tùy ý), luôn tồn tại chỉ số n 0  N (n 0 có thể phụ thuộc vào  và vào dãy số (u n ) đang xét), sao cho với mọi chỉ số n  N, n  n 0 ta luôn có n ua   .Khi đó kí hiệu lim n n ua   hoặc limu n = a và còn nói rằng dãy số (u n ) hội tụ về a. Dãy số không hội tụ gọi là dãy phân kì Định lý 1. Nếu một dãy số hội tụ thì giới hạn của nó là duy nhất Định lý 2.(Tiêu chuẩn hội tụ Weierstrass) a) Một dãy số đơn điệu và bị chặn thì hội tụ. b) Một dãy số tăng và bị chặn trên thì hội tụ. c) Một dãy số giảm và bị chặn dưới thì hội tụ. Định lý 3. Nếu (u n )  a và (v n )  (u n ), (v n )  C thì (v n )  a Định lý 4.(Định lý kẹp giữa về giới hạn) Nếu với mọi n  n 0 ta luôn có u n  x n  v n và limu n = limv n = a thì limx n = a Định lý 5 (Định lý Lagrange) Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và có đạo hàm trong khoảng (a; b) thì tồn tại c  (a; b) thỏa mãn: f(b) – f(a) = f’(c)(b – a) Định lý 6 (Định lý trung bình Cesaro) 4 Nếu dãy số (u n ) có giới hạn hữu hạn là a thì dãy số các trung bình cộng 12 n u u u n       cũng có giới hạn là a 1.2.SƠ LƢỢC VỀ PHƢƠNG PHÁP SAI PHÂN 1. Định nghĩa 1. Cho hàm số y = f(x) xác định trên R, Đặt x k = x 0 + kh (k  N*) với x 0  R, h  R bất kì, cho trước. Gọi y k = f(x k ), khi đó hiệu số 1 : k k k y y y     (k  N*) được gọi là sai phân cấp 1 của hàm số f(x) Hiệu số 2 1 : ( ) k k k k y y y          (k  N*) được gọi là sai phân cấp 2 của hàm số f(x). Tổng quát 1 1 1 1 : ( ) i i i i k k k k y y y             (k  N*) được gọi là sai phân cấp i của hàm số f(x) (i = 1, 2, …, n, …) Mệnh đề. Sai phân mọi cấp đều có thể biểu diễn theo các giá trị của hàm số: y 0 , y 1 , y 2 , …, y n , … 2.Định nghĩa 2. Phương trình sai phân (cấp k) là một hệ thức tuyến tính chứa sai phân cấp k   2 , , , , 0 k n n n n f y y y y    (1) Vì sai phân các cấp đều có thể biểu diễn theo các giá trị của hàm số nên ta có thể viết phương trình dạng a 0 y k+1 + a 1 y n+k-1 + … +a k y k = f(n) (2) trong đó a 0 , a 1 , …., a k , f(n) là các giá trị đã biết, còn y n , y n+1 , …, y n+k là các giá trị chưa biết. Hàm số y n biến n thỏa mãn (2) gọi là nghiệm của phương trình sai phân tuyến tính (2) 1.3.2. Một số định lý cơ bản của số học. a) Định lý Euler Định lý Euler. Cho m là một số tự nhiên khác 0 và a là một số nguyên tố với m. Khi ấy ta có: 1 µ(m) a (mod m) b).Định lý Fermat - Định lý Fermat Cho p là một số nguyên tố và a là một số nguyên không chia hết cho p. Khi ấy ta có: 5 a p - 1  1 (mod p) Đối với số nguyên a bất kì ta có a p  a (mod p) Chƣơng 2 TÍNH CHẤT SỐ HỌC CỦA DÃY SỐ Dãy số nguyên là phần quan trọng trong lý thuyết dãy số. Ngoài các vấn đề chung như tìm số hạng tổng quát của dãy số, tìm công thức tính tổng n số hạng đầu tiên… các bài toán về dãy số thường quan tâm đến tính chất số học của dãy số như tính chia hết, đồng dư, nguyên tố, chính phương, nguyên tố cùng nhau…Các bài toán về dãy số nguyên rất đa dạng, trong nhiều trường hợp dãy số chỉ là cái bề ngoài còn bản chất bài toánbài toán số học. 2.1.TÍNH CHIA HẾT Một số bài toán về sự chia hết của các số hạng của dãy số thường được giải bằng cách xác định số hạng tổng quát của dãy số sau đó dựa vào các định lý về đồng dư để chứng minh sự chia hết. Việc xác định số hạng tổng quát của dãy số thường được tìm bằng phương pháp sai phân hoặc thông qua dãy số phụ để đưa về phương trình sai phân thuần nhất. Bài 1. Dãy số (u n ) được xác định như sau: 1 2 3 22 1 3 1 2 23 1, 2, 40 10 . 24 . 4,5, . n n n n n nn u u u u u u u un uu                Tìm số n nhỏ nhất để u n  2048 Lời giải Nhận xét: Công thức truy hồi của dãy số rất phức tạp, tuy nhiên nếu đặt dãy số phụ ta sẽ đưa được về dạng tuyến tính cấp hai. Từ công thức truy hồi của dãy ta có 2 1 3 2 1 2 1 2 3 2 3 10 . 24 10 24 . n n n n n n n n n n n u u u u u u u u u u u               do vậy ta đặt v n = 1 n n u u  thì dãy (v n ) được xác định như sau: 6 23 12 2, 20 10 24 4,5 n n n vv v v v n         Phương trình đặc trưng x 2 – 10x + 24 = 0 có 2 nghiệm x 1 = 6, x 2 = 4 nên v n = c 1 .6 n + c 2 .4 n cho n = 2, n = 3 ta được 12 11 , 64 cc   do đó v n = 6 n-1 – 4 n-1 Vậy u n = v n .v n-1 …v 2 = (6 n-1 – 4 n – 1 ).(6 n – 2 – 4 n – 2 )…(6 – 4) = 2 n-1 .2 n-2 …2.(3 n-1 – 2 n-1 ).(3 n-2 – 2 n-2 )…(3 – 2) ( 1) 2 2 nn  .(3 n-1 – 2 n-1 ).(3 n-2 – 2 n-2 )…(3 – 2) Do (3 n-1 – 2 n-1 ).(3 n-2 – 2 n-2 )…(3 – 2) là số lẻ nên để u n  2048 thì ( 1) 2 2 2048 nn  hay ( 1) 11 2 22 nn  do đó ( 1) 11 2 nn  suy ra n  6 vậy n = 6 là giá trị cần tìm Bài 2.(HSG QG 2011) Cho dãy số nguyên (a n ) xác định bởi a 0 =1, a 1 = -1 a n = 6a n-1 + 5a n-2 với mọi n  2 Chứng minh rằng a 2012 – 2010 chia hết cho 2011 Lời giải Cách 1. Xét dãy số nguyên (b n ) xác định bởi b 0 =1, b 1 = -1 và b n = 6b n-1 + 2016b n-2 với mọi n  2 dễ thấy với mọi n  0, ta có a n  b n (mod 2011). Phương trình đặc trưng của dãy (b n ): x 2 – 6x – 2016 = 0 hay (x – 48)(x + 42) = 0 Suy ra số hạng tổng quát của dãy (b n ) có dạng: b n = C 1 .(- 42) n + C 2 . 48 n Từ các điều kiện ban đầu của dãy (b n ), ta được 12 12 1 42 48 1 CC CC      Suy ra 1 49 90 C  và 2 41 90 C  . Vì vậy 49.( 42) 41.48 0 90 nn n bn     Vì 2011 là số nguyên tố nên theo định lý Fermat nhỏ, ta có: 7 ( - 42) 2010  48 2010  1 (mod 2011) Do đó 90b 2012  49.( - 42) 2012 + 41.48 2012  49.( - 42) 2 + 41.48 2  90b 2 ( mod 2011) Suy ra b 2012  b 2 (mod 2011) ( vì (90, 2011) = 1) Mà b 2 = 6b 1 + 2016b 0 = 2010 nên b 2012  2010 (mod 2011) Vì thế a 2012  2010 (mod 2011) Cách 2. + Số hạng tổng quát của dãy (a n ):     1 2 1 2 3 14 3 14 22 14 14 nn n a                   (1) + Đặt p= 2011, ta có     11 1 1 2 1 2 3 14 3 14 22 14 14 pp p a                     Do   1 3 14 p  = A p+1 + B p+1 . 14 và   1 11 3 14 . 14 p pp AB      Trong đó 1 1 2 22 2 11 0 .3 .14 p p i ii pp i AC        (2) và 1 1 2 2 1 2 1 2 11 1 .3 .14 p p i ii pp i BC         (3) nên a p+1 = A p+1 - 4B p+1 (4) + Do p nguyên tô nên 0 k p C  (mod p) 1, 1kp   . Do đó từ 1 1 k k k p p p C C C    Suy ra 1 0 k p C   (mod p) 2, 1kp   Vì vậy từ (2) và (3) ta được 1 1 2 1 14 3 p p p A        (mod p) Và 11 11 22 1 3( 1) 14 3 3 14 3 pp pp p Bp                     (mod p) (5) Do đó từ (4) suy ra 1 2 1 3 2.14 p p p a         (mod p) Mặt khác ta có 45 2  14 (mod p) và (45, 14) = 1, theo định lý Fermat nhỏ ta có: 8 3 p 3 (mod p) v 1 2 14 p 45 p-1 1 (mod p) Do ú t (5) ta c a 2012 = a p+1 -3 + 2 = - 1 2010 (mod 2011) Vic tỡm s hng tng quỏt ca dóy s cng cú th thụng qua bin i liờn tip cỏc s hng ph thuc nhau v biu din qua mt vi s hng u v cú th ỏp dng phng phỏp quy np chng minh. Cỏc bi toỏn chng minh dóy s cú vụ hn s hng chia ht cho mt s cho trc thng c chng minh s d trong phộp chia l hu hn v do ú tun hon dn n cú vụ hn s hng chia ht cho s ó cho. 2.2.TNH CHT S NGUYấN Cỏc bi toỏn chng minh dóy s gm ton cỏc s nguyờn c a v cụng thc truy hi tuyn tớnh sau ú chng minh bng phng phỏp quy np vi mt vi s hng u l s nguyờn. Bài 1. Cho ba số nguyên a, b, c thoả mãn điều kiện a 2 = b + 1. Dãy số (u n ) xác định nh- sau: 0 22 1 0 , 0, 1, 2 n n n u u au bu c n Chứng minh rằng mọi số hạng của dãy số trên đều là số nguyên Lời giải T giả thiết ta có 22 1 cbuauu nnn n = 0, 1, 2 Suy ra 2222 1 2 1 2 cbuuauauu nnnnn (1) Với giả thiết a 2 = b + 1 thì (1) suy ra 22222 1 2 1 2 )1(2)( cuauauauuba nnnnn Hay 22 1 2 1 2 1 2 2 cbuuauauu nnnnn (2) Từ giả thiết ta có 2 12 22 1 nnn auucbu Nên (2) suy ra 2 12 2 1 nnnn auuauu (3) Do u n+2 au n+1 0 nên (3) 112 nnnn auuauu 112 nnnn auuauu (4) Do u 0 = 0 cccbuauu 222 001 do đó u 0 , u 1 Z Vậy từ (4) suy ra u n Z Nn (đpcm) 9 Nhn xột: Ta cng cú th gii bi toỏn ny bng cỏch khỏc nh sau: Ta cú: 2 2 2 2 11 2 ( ) 0 n n n n u au u u a b c Hay 2 2 2 11 20 n n n n u au u u c (5) Trong (5) thay n bi n +1 ta cú 2 2 2 2 1 2 1 20 n n n n u au u u c (6) Tr tng v ca (6) cho (5) c 22 2 1 2 1 2 2 0 n n n n n n u u au u au u hay 2 2 1 20 n n n n n u u u u au (7) T (7) suy ra u n+2 = u n hoc u n+2 =2au n+1 u n T ú do u 0 , u 1 Z nờn u n Z vi mi n = 1, 2, T bi toỏn ny cú th cho nhiu bi toỏn vi cỏc giỏ tr a, b, c c th. Chng hn, chng minh rng mi s hng ca cỏc dóy s sau u l s nguyờn. 1) 0 2 1 0 5 24 9 n n n u u u u 2) 0 2 1 0 4 15 60 n n n u u u u Ta cng cú th da vo cỏch chng minh a ra cỏc bi toỏn sau: 3) 0 2 1 1 5 24 25 n n n u u u u 4) 0 2 1 2 3 8 9 nnn u uuu 2.3.TNH CHNH PHNG Vi tớnh cht ny ta thng tỡm s hng tng quỏt ca dóy s, a biu thc cn chng minh v bỡnh phng ca mt s nguyờn. Vi mt s bi toỏn tng quỏt ta cú th c bit húa cú bi toỏn mi, ngc li vi mt bi toỏn c th ta cú th tng quỏt húa c mt dng toỏn . Bài 1. Cho dãy số (a n ): 01 11 0; 1 (1) 2 1 (2) n n n aa a a a Chứng minh rằng 4a n+2 a n + 1 là số chính ph-ơng (n 1) Lời giải Cỏch 1. Xét ph-ơng trình đặc tr-ng 1012 2 (nghiệm kép) Ta tìm g(n) = an 2 sao cho g(n+1) 2g(n) + g(n-1) = 1 với mọi n N* 10 Giải ra ta có 2 )( 2 n ng hay 2 2 * n a n là một nghiệm riêng của ph-ơng trình (2) Do đó (2) có nghiệm tổng quát 2 2 21 n nCCa n a 0 = 0 suy ra C 1 = 0, a 1 = 1 nên C 2 + 2 1 = 1 C 2 = 2 1 Vậy 2 )1( 22 1 2 nnn na n Do đó 4a n+2 a n + 1 = 1 2 )1( . 2 )3)(2( 4 nnnn = n(n+1)(n+2)(n+3) + 1= = (n 2 + 3n)(n 2 + 3n + 2) + 1 = (n 2 + 3n + 1) 2 (đpcm) Cỏch 2. T cụng thc truy hi ca dóy ta thay n + 1 bi n ta c a n = 2a n-1 a n-2 + 1 (3) Tr v theo v ng thc (2) v (3) c a n+1 3a n + 3a n-1 a n-2 = 0 Xột phng trỡnh c trng 32 3 3 1 0 1 2 n a n n . Do a 0 = 0, a 1 = 1, a 2 = 3 ta tỡm c 1 0, 2 ( 1) 2 n nn a Do đó 4a n+2 a n + 1 = 1 2 )1( . 2 )3)(2( 4 nnnn = n(n+1)(n+2)(n+3) + 1= = (n 2 + 3n)(n 2 + 3n + 2) + 1 = (n 2 + 3n + 1) 2 (đpcm) Nhn xột. Ta cú th tỡm s hng tng quỏt m khụng cn phng phỏp sai phõn, cỏch lm ny s gn gi hn vi chng trỡnh hc ph thụng ban c bn. t b n = a n+1 a n T gi thit ta cú a n+1 a n =a n a n-1 +1. Do ú b n = b n 1 + 1 T ú tỡm c b n = 1 + n (do (b n ) l cp s cng vi cụng sai bng 1, b 0 = 1 Ta cú 1 1 1 10 0 0 0 ( 1) ( 1) 22 n n n n k k k k k k n n n n a a a a b n k n [...]... giải cụ thể, có đề xuất một số dạng toán tổng quát, một số bài toán tổng quát cũng đã được đặc biệt hóa để có nhiều bài toán khác Luận văn cũng đã trình bày một số dạng toán về giới hạn dãy số như giới hạn của tổng, dãy con và sự hội tụ của dãy số, dãy số xác định bởi phương trình Các bài toán dạng này đều có phương pháp giải cụ thể vận dụng các kiến thức về dãy số, các định lý về giới hạn 14 Luận văn... LUẬN Dãy sốmột lĩnh vực khá rộng và khó, các bài toán dãy số rất đa dạng Trong bản luận văn này chỉ đề cập đến tính chất số học của dãy số và giới hạn của dãy số Luận văn đã trình bày hệ thống các bài toán về tính chất số học của dãy số như tính chia hết, tính nguyên, tính chính phương Trong các bài toán này đều vận dụng kiến thức tổng hợp về số học, dãy số, phương pháp sai phân, mỗi dạng toán. .. nhiên có những dãy số phức tạp, tăng giảm bất thường, trong trường hợp như thể ta thường xây dựng các dãy số phụ đơn điệu, chứng minh các dãy số phụ có giới hạn, sau đó chứng minh dãy số ban đầu có cùng giới hạn, các dãy số phụ phải được xây dựng từ dãy số chính Nhận xét: Mọi dãy con của dãy hội tụ đều hội tụ và ngược lại nếu limx2n = limx2n+1 = a thì limxn= a Một cách tổng quát ta có Cho số nguyên m... đồng nghiệp, các em học sinh để cuốn tài liệu về dãy số này được hoàn thiện hơn References 1 Nguyễn Đễ, Nguyễn Khánh Nguyên (dịch) (1996) Các đề thi vô địch toán 19 nước – trong đó có Việt Nam, NXB Giáo dục 2 Phan Huy Khải (2007) Chuyên đề bồi dưỡng học sinh giỏi toán thpt các bài toán về dãy số, NXB Giáo dục 3 Phan Vũ Khải (1997) 10.000 bài toán cấp dãy số và giới hạn, NXB Hà Nội 4 Nguyễn Vũ Lương... giới hạn của dãy số cũng thường được giải ra từ phương trình Đâymột trong các nội dung quan trọng nhất của phần dãy số Với dạng toán tìm giới hạn của dãy số có liên quan đến phương trình ta thường xét tính đơn điệu của hàm số, áp dụng định lý Lagrange và định lý về giới hạn kẹp giữa Bài 1 Giả sử xn thuộc khoảng (0; 1) là nghiệm của phương trình 1 1 1    0 x x 1 xn Chứng minh dãy (xn) hội... dãy tăng, giả sử limxn = a (a  1) Nên ta có a  a(a  1)(a  2)(a  3)  1 Suy ra a2 = a(a+1)(a+2)(a+3) + 1 hay a4 + 6a3 + 10a2 + 6a +1 = 0 Rõ ràng phương trình này không có nghiệm thỏa mãn a  1 Vậy limxn =  11 3.2.DÃY CON VÀ SỰ HỘI TỤ CỦA DÃY SỐ Khi khảo sát sự hội tụ của dãy số ta thường sử dụng các định lý về tính đơn điệu và bị chặn, nếu dãy không đơn điệu thì xét dãy với chỉ số chẵn, chỉ số. .. phương pháp giải cụ thể vận dụng các kiến thức về dãy số, các định lý về giới hạn 14 Luận văn đã chọn lọc được các bài toán điển hình cho mỗi dạng toán, đặc biệt có nhiều bài toán là đề thi học sinh giỏi quốc gia, quốc tế những năm gần đây qua đó thấy vai trò quan trọng của bài toán về dãy số trong các đề thi này Tuy nhiên, do thời gian và năng lực bản thân còn hạn chế nên bản luận văn này chắc không...Chƣơng 3 GIỚI HẠN CỦA DÃY SỐ 3.1.GIỚI HẠN CỦA TỔNG Các bài toán về tìm giới hạn của tổng ta thu gọn tổng đó bằng cách phân tích hạng tử tổng quát thành hiệu các hạng tử nối tiếp nhau để các hạng tử có thể triệt tiêu, cuối cùng đưa tổng đó về biểu thức chỉ còn chứa xn , sau đó tìm limxn Bài 1 Cho dãy số (xn) (n = 1, 2, …) được xác định như sau: x1 = 1 và xn1 ... của fn+1(x) Nghiệm đó chính là xn+1 Suy ra xn+1 < xn Tức dãy số (xn) giảm, do dãy số này bị chặn dưới bởi 0 nên dãy số có giới hạn Ta chứng minh dãy số trên có giới hạn bằng 0 Ta dễ dàng chứng minh kết quả sau: 1 1 1 1     ln n 2 3 n  1 1 (Có thể chứng minh bằng cách đánh giá ln 1    )  n n Thật vậy, giả sử lim xn  a  0 Khi đó do dãy (xn) giảm nên ta có xn  a n n  Do 1  1 1 1 ... ra limxn=0 Nhận xét: Việc đưa vào dãy phụ (an) có tác dụng chặn cả hai dãy con (x2n) và (x2n+1) và làm chúng cùng hội tụ về một điểm Có thể sử dụng phương pháp sai phân tìm được số hạng tổng quát n  1 6   1 6  xn  C1    C2   5   5       n 12 Thay các giá trị của x0, x1 để tìm C1, C2 từ đó tìm được limxn =0 3.3.DÃY SỐ XÁC ĐỊNH BỞI PHƢƠNG TRÌNH Dãy số có mối quan hệ chặt chẽ với phương . giải toán, phân tích các bài toán cụ thể. Đề cập đến một số bài toán về giới hạn dãy số như: giới hạn của tổng, dãy con và sự hội tụ của dãy số, dãy số. xuất hiện các bài toán về dãy số. Để giải được các bài toán về dãy số đòi hỏi người làm toán phải có kiến thức tổng hợp về số học, đại số, giải tích.

Ngày đăng: 10/02/2014, 15:25

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan