Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 154 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
154
Dung lượng
6,97 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG XUÂN THÀNH MẬT Mà DỮ LIỆU ẢNH ỨNG DỤNG KỸ THUẬT HỖN LOẠN LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ HÀ NỘI - 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG XUÂN THÀNH MẬT Mà DỮ LIỆU ẢNH ỨNG DỤNG KỸ THUẬT HỖN LOẠN Ngành: Kỹ thuật điện tử Mã số: 9520203 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS HOÀNG MẠNH THẮNG HÀ NỘI - 2020 LỜI CAM ĐOAN Tôi xin cam đoan kết trình bày Luận án cơng trình nghiên cứu tơi hướng dẫn PGS.TS Hoàng Mạnh Thắng Các số liệu, kết trình bày luận án hồn tồn trung thực chưa công bố cơng trình trước Các kết sử dụng tham khảo trích dẫn đầy đủ theo quy định Hà nội, ngày 22 tháng năm 2020 Người hướng dẫn khoa học PGS.TS Hoàng Mạnh Thắng Tác giả Hoàng Xuân Thành LỜI CÁM ƠN Để hoàn thành Luận án này, xin gửi lời biết ơn sâu sắc đến Thày cô Bộ môn Điện tử Kỹ thuật máy tính, Viện Điện tử–Viễn thông hỗ trợ, giúp đỡ động viên suốt trình làm luận án tiến sĩ Trường Đại học Bách khoa Hà Nội Tôi gửi lời cám ơn đến người hướng dẫn, PGS Hoàng Mạnh Thắng, người bảo định hướng cho trình nghiên cứu Xin cám ơn nhiều! Hà nội, ngày 22 tháng năm 2020 Mục lục Trang DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT iv DANH MỤC CÁC KÝ HIỆU TOÁN HỌC vi DANH SÁCH CÁC HÌNH VẼ, ĐỒ THỊ vii DANH SÁCH CÁC BẢNG x MỞ ĐẦU Chương 1: TỔNG QUAN VỀ HÀM HỖN LOẠN VÀ ẢNH SỐ 1.1 Giới thiệu 1.2 Mật mã đại phân loại .8 1.2.1 Định nghĩa 1.2.2 Phân loại mật mã 1.3 Hệ thống hỗn loạn 12 1.3.1 Hệ hỗn loạn liên tục theo thời gian 12 1.3.2 Hệ hỗn loạn rời rạc theo thời gian .13 1.3.2.1 Hàm Logistic 14 1.3.2.2 Hàm Henon 14 1.3.2.3 Hàm Cat 15 1.3.2.4 Hàm hỗn loạn Cat-Hadamard 15 1.3.2.5 Hàm Standard .16 1.3.2.6 Hàm Skew tent 16 1.3.2.7 Hàm Chebyshev 17 1.3.2.8 Hàm hỗn loạn không gian-thời gian 17 1.4 Các thuộc tính hàm hỗn loạn phù hợp cho ứng dụng mật mã 17 1.4.1 Các thuộc tính 17 1.4.2 Các tham số tính chất hàm hỗn loạn dùng mật mã 19 1.5 Tạo chuỗi ngẫu nhiên dùng hàm hỗn loạn .21 1.5.1 Tạo chuỗi bit ngẫu nhiên 22 1.5.2 Tạo chuỗi số giả ngẫu nhiên 23 1.5.3 Một số ý thiết kế phần cứng cho hàm hỗn loạn .24 1.6 Ảnh số đặc điểm 25 1.6.1 Biểu diễn ảnh số .25 1.6.2 Các đặc trưng liệu ảnh 26 i 1.7 Kết luận 28 Chương 2: MẬT Mà ẢNH Ở MỨC BIT ỨNG DỤNG KỸ THUẬT HỖN LOẠN 30 2.1 Giới thiệu 30 2.2 Mơ hình mật mã cấu trúc SPN .31 2.2.1 Hoán vị điểm ảnh sử dụng hỗn loạn 33 2.2.1.1 Các chế hoán vị liệu cho ảnh 34 2.2.1.2 Luật hoán vị dựa vào biến trạng thái 34 2.2.1.3 Luật hoán vị dựa vào đặc tính động hàm hỗn loạn rời rạc 38 2.2.1.4 Đánh giá hiệu phép hoán vị 40 2.2.2 Phép thay sử dụng hỗn loạn 43 2.2.2.1 Phép thay không tạo lan truyền 43 2.2.2.2 Thay có lan truyền 45 2.3 Đề xuất hệ mật mã hỗn loạn làm việc mức bit 46 2.3.1 Đề xuất 1: Hệ mật mã dựa tác động lên đặc tính động hàm hỗn loạn 47 2.3.1.1 Bộ mật mã 48 2.3.1.2 Bộ giải mật mã 51 2.3.1.3 Kết mô 52 2.3.1.4 Phân tích khả bảo mật 52 2.3.1.5 Kết thiết kế mạch cứng 57 2.3.2 Đề xuất 2: Hệ mật mã hỗn loạn cho ảnh mức bit 64 2.3.2.1 Giải thuật mật mã dùng hàm hỗn loạn Cat-Hadamard 65 2.3.2.2 Giải thuật giải mật 66 2.3.2.3 Chi phí tính tốn 67 2.3.2.4 Giải thuật phân phối khóa 67 2.3.2.5 Phân tích khả bảo mật 68 2.4 Kết luận 72 Chương 3: PHÂN TÍCH MẬT Mà HỖN LOẠN CĨ CẤU TRÚC SPN 74 3.1 Giới thiệu 74 3.2 Một số qui ước phân tích mã 76 3.3 Mô tả hệ mật mã hỗn loạn đề xuất W Zhang 76 ii 3.4 Đề xuất 3: Phân tích hệ mật mã hỗn loạn có cấu trúc SPN với vòng lặp mã 80 3.4.1 Tấn công lựa chọn văn trơn 81 3.4.1.1 Tấn công vào q trình hốn vị 81 3.4.1.2 Tấn công vào khuếch tán 85 3.4.2 Tấn cơng lựa chọn văn mã hóa 88 3.4.2.1 Tấn cơng q trình hốn vị ngược 88 3.4.2.2 Tấn công khuếch tán ngược 92 3.4.3 Ước lượng thời gian công .95 3.4.3.1 Thời gian cơng hốn vị 95 3.4.3.2 Thời gian công khuếch tán 96 3.4.4 Một số bàn luận công vòng lặp mã 97 3.5 Đề xuất 4: Phân tích mật mã hỗn loạn có cấu trúc SPN với nhiều vịng lặp mã 98 3.5.1 Giải thuật mật mã giải mật nhiều vòng lặp mã 98 3.5.2 Phân tích mã 100 3.5.2.1 Nhận diện điểm yếu hệ mật mã 101 3.5.2.2 Khơi phục luật hốn vị 105 3.5.3 Đề xuất phương pháp nâng cao bảo mật cho hệ mật mã 115 3.6 Kết luận 122 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN 124 DANH MỤC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN 126 TÀI LIỆU THAM KHẢO 127 iii Danh mục ký hiệu chữ viết tắt VIẾT TẮT TIẾNG ANH TIẾNG VIỆT 1D One-dimention Một chiều tự 2D Two-dimention Hai chiều tự AES Advanced Encryption System Chuẩn mã hóa tiên tiến BDB Bit Distribution Balancing Cân phân bố bit BIC Bit Independence Criteria Tiêu chí độc lập bit đầu CCA Chosen-ciphertext Attack Tấn cơng mà người phân tích lựa chọn tập văn mã hóa CD Chaotic Diffusion Khuếch tán hỗn loạn Cdr Ciphertext difference rate Tỷ lệ sai khác văn văn mã hóa CML Coupled Map Lattice Ghép hàm hỗn loạn COA Ciphertext-only Attack Tấn cơng có văn văn mã hóa COL Column Ma trận cột CPA Chosen-plaintext Attack Tấn công lựa chọn văn rõ CPP Chaotic Pixel Permutation Hoán vị điểm ảnh hỗn loạn DBAP Distance Between Adjacent Pixels Khoảng cách điểm ảnh lân cận DES Data Encryption Standard Chuẩn mã liệu 3DES Triple Data Encryption Standard Chuẩn mã liệu gấp ba FIPS 199 Federal Information Processing Bản công bố tiêu chuẩn xử lý Standard Publication 199 thông tin liên bang 199 FPGA Field Programmable Gate Array Mảng cổng lập trình HSV Hue, Saturation, and Value iBDB Inverse Bit Distribution Balancing Giải ngược cân phân bố bit iCD Inverse Chaotic Diffusion iCPP Inverse Chaotic Pixel Permutation Giải ngược hoán vị điểm ảnh hỗn Giải ngược khuếch tán hỗn loạn loạn ID Initial for Diffusion Giá trị khởi đầu cho khuếch tán iv IP Initial for Permutation Giá trị khởi đầu cho hoán vị IV Initial Vector/values Giá trị khởi đầu KPA Known-Plaintext Attack Tấn công biết rõ LFSR Linear Feedback Shift Register Thanh ghi dịch phản hồi tuyến tính NIST National Institute of Standards Viện quốc gia chuẩn công and Technology nghệ NPCR Number of Pixels Change Rate Tỷ lệ số điểm ảnh thay đổi giá trị PAPC Percentage of adjacent pixels Phần trăm điểm ảnh lân cận count PRESENT Mã hạng nhẹ PRESENT PKI Public Key Infrastructure Nền tảng khóa cơng khai PV Primary vertex Điểm sơ cấp PWLCM Piece-wise Linear Chaotic Map Hàm hỗn loạn gồm đoạn tuyến tính RGB Red, Green, and Blue Kênh màu đỏ, xanh xanh dương ROW Row Ma trận hàng RSA Rivest–Shamir–Adleman Thuật toán mật mã RSA SAC Strict Avalanche Criterion Tiêu chí thác chặt SAFER Secure And Fast Encryption Rou- Thủ tục mật mã hóa nhanh an tine SPN toàn Substitution-Permutation Net- Mạng thay thế-hoán vị work SV Secondary vertex Điểm thứ cấp UACI Unified Average Changing Inten- Cường độ thay đổi trung bình sity VHDL VHSIC Hardware thống Description Ngôn ngữ mô tả phần cứng VH- Language SIC v Danh mục ký hiệu toán học Ký hiệu Ý nghĩa λ Lũy thừa Lyapunov ⊗ Tích Kronecker ⊕ bit-wise XOR of two binary vectors or matrices det Định thức ma trận rand i rcv _rd Dãy số ngẫu nhiên, hay rand viết ngắn gọn random Giá trị khôi phục rd, viết tắt recovered random sequence Xn Véctơ biến trạng thái (x, y ), (x i , y i ) Tọa độ điểm ảnh p(x, y ) Điểm ảnh tọa độ (x, y ) pR (x, y ), p G (x, y ), pB (x, y ) Điểm ảnh màu tương ứng R, G, B tọa độ (x, y ) (a mod n) mod(a, n) div (x, y ) Hàm modulo a cho n Hàm thực phép chia x cho y (i) X (i) (t), X n F ( ) , G(.), Biến trạng thái T (.), Hàm liên tục f (.), f i (.) U NIQU E (.) Hàm tìm trả tập số P, C, K, E, D Biểu diễn tập hợp văn trơn, văn mã hóa, khóa mật, thuật tốn mã hóa, thuật tốn giải mã P, C, K, E, D Biểu diễn thành phần tập hợp văn trơn, văn mã hóa, khóa mật, thuật tốn mã hóa, thuật tốn giải mã PK A Khóa cơng khai bên gửi A PK B Khóa cơng khai bên nhận B vi DANH MỤC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN [C1] Ta Thi Kim Hue, Thang Manh Hoang, Hoang Xuan Thanh, An Braeken (2018), “Bit Plane Decomposing Image Encryption Based on Discrete Cat-Hadamard map”, 2018 IEEE Seventh International Conference on Communications and Electronics (IEEE ICCE 2018), TP Huế, Việt nam, tháng 72018, pp 344 – 349 [J1] Hoang Xuan Thanh, Thang Manh Hoang (2017), “Cryptanalysis of a Symmetric Color Image Encryption with One-round Encryption”, ASEAN Engineering Journal (Part A: CIE, EEE, EneE & ME/ManuE), Vol.5, pp 34-55 [J2] Thang Manh Hoang, Hoang Xuan Thanh (2018), “Cryptanalysis and security improvement for a symmetric color image encryption algorithm”, International Journal for Light and Electron Optics (Optik), Vol.155, pp 366–383 [J3] Thang Manh Hoang, Hoang Xuan Thanh (2019), “A Novel Cryptosystem Using Dynamics Per turba tion of Logistic map”, The Journal of Science and Technology (7 Technical Universities), Vol 139, pp.024-030 126 Tài liệu tham khảo [1] H Noura, S E Assad, C Vladeanu, and D Caragata ( Dec 2011), “An efficient and secure spn cryptosystem based on cha otic co ntrol parameters,” in 2011 International Conference for Internet Technology and Secured Transactions, pp 226–231 [2] Øyvind Kolas ˚ (2007), “Image processing with gluas,” [3] S K Abd-El-Hafiz, S H AbdElHaleem, and A G Radwan (2016), “Novel permutation measures for image encryption algorithms,” Optics and Lasers in Engineering, Vol 85, pp 72 – 83 [4] T T Luong, N N Cuong, and L T Dung ( Oct 2015), “A new statement about direct exponent of an mds matrix in block ciphers,” in Proc Seventh Int Conf Knowledge and Systems Engineering (KSE), pp 340–343 [5] T T Luong, N N Cuong, and H D Tho ( June 2017), “On the calculation of input and output for dynamic mds matrices in diffusion layer of spn block ciphers,” in Proc Int Conf Information and Communications (ICIC), pp 281– 287 [6] L V Thai and P K Hoan ( Dec 2015), “Mceliece cryptosystem ba sed identification a nd signature scheme using chained BCH codes,” in Proc Management and Telecommunications (ComManTel) 2015 Int Conf Communications, pp 122–127 [7] V Dao, A Nguyen, V Hoang, and T Tran ( Dec 2015), “An ASIC implementation of low area AES encryption core for wireless networks,” in Proc Management and Telecommunications (ComManTel) 2015 Int Conf Communications, pp 99–102 [8] L V Thai, N T Phuoc Van, and P K Hoan ( Feb 2017), “A novel method of decoding the BCH code based on norm syndrome to improve the error correction efficiency,” in Proc 2nd Workshop Recent Trends in Telecommunications Research (RTTR), pp 1–4 [9] T Hue, T Hoang, A Braeken, and K Steenhaut (2016), “Design of the chaosbased diffusion layer for lightweight block cipher,” Journal of Science and Technology (established by technical universities in Vietnam), Vol 113, pp 86–92 [10] N X Quyen, V V Yem, and T M Hoang (2012), “A chaotic pulse-time mod127 ulation method for digital communication,” Abstract and Applied Analysis, Vol 2012, pp 1–15 ˇ (2010), “Cryptanalysis of [11] E Solak, C C¸okal, O T Yildiz, and T Biyikoglu fridrich’s chaotic image encryption,” International Journal of Bifurcation and Chaos, Vol 20, no 05, pp 1405–1413 [12] D Arroyo, J Diaz, and F Rodriguez (2013), “Cryptanalysis of a one rou nd chaos-based substitution permutation network,” Signal Processing, Vol 93, no 5, pp 1358 – 1364 [13] J Holden (2017), The Mathematics of S ecrets: Cryptography from Caesar Ciphers to Digital Encryption Princeton University Press [14] R E Blahut (2014), Cryptography and Secure Communication Cambridge University Press [15] B Schneier (1996), Applied Cryptograph y Wiley-New York [16] P Ping, J Fan, Y Mao, F Xu, and J Gao (2018), “A chaos based image encryption scheme using digit-level permutation and block diffusion,” IEEE Access, Vol 6, pp 67581–67593 [17] R Kilic (2010), A Practical Guide for Studying Chua’s Circuits World Scientific [18] J Ohtsubo (2017), Semiconductor Lasers: Stability, Instability and Chaos World Scientific [19] M Clerc, P Coullet, and E Tirapegui (1999), “Lorenz bifurcation: Instabilities in quasireversible systems,” Phys Rev Lett., Vol 83, pp 3820–3823 [20] L Merah, A Ali Pacha, N Hadj Said, and M Mamat (2013), “Design and fpga implementation of lorenz chaotic system for information security issues,” Applied Mathematical Sciences, Vol 8, pp 237–246 [21] K A K Patro and B Acharya (2019), “An efficient colour image encryption scheme based on 1-d chaotic maps,” Journal of Information Security and Applications, Vol 46, pp 23 – 41 [22] H Wang, H.-F Liang, and Z.-H Miao (2016), “A new color image encryption scheme based on chaos synchronization of time-delay lorenz system,” Advances in Manufacturing, Vol 4, no 4, pp 348–354 [23] T M Hoang, T D Nguyen, N V Duc, J C Chedjou, and K Kyamakya ( June 2009), “Design an d simulation of circuit for synchronization of multidelay feedback systems,” in VXV International Symposium on Theoretical Engineering, pp 1–4 128 [24] N Jiang, X Dong, H Hu, Z Ji, and W Zhang (2019), “Quantum image encryption based on henon mapping,” International Journal of Theoretical Physics, Vol 58, no 3, pp 979–991 [25] S J Sheela, K V Suresh, and D Tandur (2018), “Image encryption based on modified henon map using hybrid chaotic shift transform,” Multimedia Tools and Applications, Vol 77, no 19, pp 25223–25251 [26] S E Assad and M Farajallah (2016), “A new chaos-based image encryption system,” Signal Processing: Image Communication, Vol 41, pp 144 – 157 [27] G Gu and J Ling (2014), “A fast image encryption method by using chaotic 3D Cat maps,” Optik, Vol 125, no 17, pp 4700 – 4705 [28] T T K Hue and T M Hoang (2017), “Complexity and properties of a multidimensional Cat-Hadamard map for pseudo random number generation,” The European Physical Journal Special Topics, Vol 226, no 10, pp 2263–2280 [29] K.-W Wong, B S.-H Kwok, and W.-S Law (2008), “A fast image encryption scheme based on chaotic standard map,” Physics Letters A, Vol 372, no 15, pp 2645 – 2652 [30] B Mondal, S Singh, and P Kumar (2019), “A secure image encryption scheme based on cellular automata and chaotic skew tent map,” Journal of Information Security and Applications, Vol 45, pp 117 – 130 [31] M Essaid, I Akharraz, A Saaidi, and A Mouhib (2018), “A new image encryption scheme based on confusion-diffusion u sing an enh anced skew tent map,” Procedia Computer Science, Vol 127, pp 539 – 548 [32] K Kaneko (1993), Theory and application of coupled map lattices John Wiley & Sons [33] J P Eckmann and D Ruelle (1985), “Ergodic theory o f chaos and strange attractors,” Rev Mod Phys., Vol 57, pp 617–656 [34] F Christiansen and H H Rugh (1997), “Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization,” Nonlinearity, Vol 10, no 5, pp 1063–1072 [35] S Lian, J Sun, and Z Wang (2005), “Security an alysis of a chaos-based image encryption algo rithm,” Physica A: Statistical Mechanics and its Applications, Vol 351, no 2–4, pp 645 – 661 [36] L Liu and S Miao (2016), “A new image encryption algorithm based on Logistic chaotic map with varying parameter,” SpringerPlus, Vol 5, no 1, p 289 [37] L Liu, S Miao, H Hu, and Y Deng (2016), “Pseudora ndo m bit generator 129 based on non-stationary Logistic maps,” IET Information Security, Vol 10, no 2, pp 87–94 [38] G Ye and X Huang (2017), “An efficient symmetric image encryption algorithm based on an intertwining Logistic map,” Neurocomputing, Vol 251, pp 45 – 53 [39] Y.-Q Zhang and X.-Y Wang (2014), “A symmetric image encryption algorithm based on mixed linear–n onlin ear coupled map lattice,” Information Sciences, Vol 273, pp 329 – 351 [40] Y.-Q Zhang, Y He, and X.-Y Wang (2018), “Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled Logistic map lattice,” Physica A: Statistical Mechanics and its Applications, Vol 490, pp 148 – 160 [41] S W (Dec 1999), Functionality classes and evalu ation methodology for deterministic random number generators Retrieved aug 2013, Anwendungshinweise and Interpretation (AIS) [42] A M Ayoup, A H Hussein, and M A A Attia (2016), “Efficient selective image encryption,” Multimedia Tools and Applications, Vol 75, no 24, pp 17171–17186 [43] E Barkan and E Biham (2006), “On the security of the GSM cellular network,” NATO Security through Science Series, D: Information and Communication Security – Vol 2, , pp., 2006., Vol 2, p 188–195 [44] E Barkan, E Biham, and N Keller (2003), “Instant ciphertext-only cryptanalysis of GSM encrypted communications,” in Advances in Cryptology, proceedings of Crypto 2003, p 600–616, Springer-Verlag [45] D Ruelle (1989), Cha otic Evolution a nd Strange Attractors Cambridge University Press Cambridge Books Online [46] J M Bahi, X Fang, C Guyeux, and Q Wang ( Sep 2010), “Randomness quality of ci chaotic generators: Applications to internet security,” in 2010 2nd International Conference on Evolving Internet, pp 125–130 [47] A K N Smaoui (2009), “Logistic chaotic maps for binary numbers generations,” Chaos, Solitons & Fractals, Vol 40, pp 2557–2568 [48] Q Wang, C Guyeux, and J M Bahi ( Aug 2009), “A novel pseudo-rand om number generator based on discrete chaotic iterations,” in 2009 First International Conference on Evolving Internet, pp 71–76 [49] H Yang, X Liao, K wo Wong, W Zhang, and P Wei (2009), “A new cryp- 130 tosystem based on chaotic map and operations algebraic,” Chaos, Solitons & Fractals, Vol 40, no 5, pp 2520 – 2531 [50] C Guyeux and J M Bahi ( July 2010), “Topological chaos and chaotic iterations application to hash functions,” in The 2010 International Joint Conference on Neural Networks (IJCNN), pp 1–7 [51] T Xiang, X Liao, G Tang, Y Chen, and K wo Wong (2006), “A novel block cryptosystem based on iterating a chaotic map,” Physics Letters A, Vol 349, no 1–4, pp 109 – 115 [52] T Kohda and A Tsuneda (1997), “Statistics of chaotic binary sequences,” IEEE Transactions on Information Theory, Vol 43, no 1, pp 104–112 [53] A Tsuneda (2005), “Design of binary sequences with tunable exponential autocorrelations and run statistics based on one-dimensional chaotic maps,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol 52, no 2, pp 454–462 [54] G Zhang and Q Liu (2011), “A novel image encryption method based on total shuffling scheme,” Optics Communications, Vol 284, no 12, pp 2775 – 2780 [55] X Wang, L Teng, and X Qin (2012), “A novel colour image encryption algorithm based on chaos,” Signal Processing, Vol 92, no 4, pp 1101 – 1108 [56] X.-J Tong, M Zhang, Z Wang, Y Liu, H Xu, and J Ma (2015), “A fast encryption algorithm of color image based on four-dimensional chaotic system,” Journal of Visual Communication and Image Representation, Vol 33, pp 219 – 234 [57] S E Assad, H Noura, and I Taralova ( Oct 2008), “Design and analyses of efficient chaotic generators for crypto-systems,” in Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, pp 3–12 [58] M Farajallah, S E Assad, and O Deforges (2016), “Fast and secure chaosbased cryptosystem for images,” International Journal of Bifurcation and Chaos, Vol 26, no 02, p 1650021 [59] G Ye (2010), “Image scramblin g encryption algorithm of pixel bit based on chaos map,” Pattern Recognition Letters, Vol 31, no 5, pp 347 – 354 [60] Y Wang, K.-W Wong, X Liao, and G Chen (2011), “A new chaos-based fast image encryption algorithm,” Applied Soft Computing, Vol 11, no 1, pp 514 – 522 [61] W Zhang, K.-W Wong, H Yu, and Z.-L Zhu (2013), “A symmetric color 131 image encryption algorithm using the intrinsic features of bit distributions,” Commun Nonlinear Sci Numer Simulat, Vol 18, pp 584–600 [62] L E Bassham III, A L Rukhin, J Soto, J R Nechvatal, M E Smid, E B Barker, S D Leigh, M Levenson, M Vangel, D L Banks, et al (2010), “Sp 800-22 rev 1a a statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards & Technology, [63] G Chen and X Dong ( May 1993), “Ordering chaos of chua’s circuit-a feedback contro l approach,” in Proc IEEE Int Symp Circuits and Systems, pp 2604–2607 vol.4 [64] H Ma, Y Yu, C Yang, N Yang, Y Wang, X Wang, and T Nyima ( Dec 2018), “Dynamical behaviors of a modified chua’s circuit,” in Proc 11th Int Symp Computational Intelligence and Design (ISCID), Vol 01, pp 29–32 [65] X Peng, L Wenshi, F Yejia, and C Li ( Nov 2016), “Chaotic circuit design methodology and case study,” in Proc 10th Int Conf Sensing Technology (ICST), pp 1–5 [66] R Delgado-Restituto, R L de Ahumada, and A Rodriguez-Vazquez ( Apr 1995), “Secure communication through switched-current chaotic circuits,” in Proc ISCAS’95 - Int Symp Circuits and Systems, Vol 3, pp 2237–2240 vol.3 [67] M Delgado-Restituto, M Linan, and A Rodriguez-Vazquez ( May 1996), “IC design for spread spectrum communication exploiting chaos,” in Proc IEEE Int Symp Circuits and Systems Circuits and Systems Connecting the World ISCAS 96, Vol 3, pp 178–181 vol.3 [68] M Delgado-Restituto, A J Acosta, and A Rodriguez-Vazquez ( July 2005), “A mixed-signal integrated circuit for FM-dcsk modulation,” IEEE Journal of Solid-State Circuits, Vol 40, pp 1460–1471 [69] R Femat, R Jauregui-Ortiz, and G Solis-Perales ( Oct 2001), “A cha os-ba sed communication scheme via robust asymptotic feedback,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol 48, pp 1161–1169 [70] D I R Almeida and J Alvarez ( June 2004), “Robust synchronization of a class of nonlinear systems,” in Proc American Control Conf, Vol 2, pp 1259– 1264 vol.2 [71] C Li, K Qian, S He, H Li, and W Feng (2019), “Dynamics and optimization contro l of a robust chaotic map,” IEEE Access, Vol 7, pp 160072–160081 132 [72] S Jeffress, P Duben, ¨ and T Palmer ( Sept 2017), “Bitwise efficiency in chaotic models.,” Proceedings Mathematical, physical, and engineering sciences, Vol 473, p 20170144 [73] M Jessa ( Sept 2010), “A per turba tion-ba sed algorithm with extremely long periods of generated cycles,” in NOLTA, pp 418–421, IEICE [74] M Abutaha, S El Assad, O Jallouli, A Queudet, and O Deforges ( June 2016), “Design of a pseudo-chaotic number generator as a random number ge nerator,” in Proc Int Conf Communications (COMM), pp 401–404 [75] C Solomon and T Breckon (2011), Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab Wiley [76] L Kocarev and S Lian (2011), Chaos-based Cryptography Springer [77] L Kocarev (2001), “Chaos-based cryptography: a brief overview,” IEEE Circuits and Systems Magazine, Vol 1, no 3, pp 6–21 [78] G Alvarez and S Li (2006), “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol 16, no 08, pp 2129–2151 [79] M Li, Y Guo, J Huang, and Y Li (2018), “Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure,” Signal Processing: Image Communication, Vol 62, pp 164 – 172 [80] A.-V Diaconu (2016), “Circular inter-intra pixels bit-level permutation and chaos-based image encryption,” Information Sciences, Vol 355-356, pp 314 – 327 [81] C Cao, K Sun, and W Liu (2018), “A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map,” Signal Processing, Vol 143, pp 122 – 133 [82] L Teng, X Wang, and J Meng (2018), “A chaotic color image encryption using integrated bit-level permutation,” Multimedia Tools and Applications, Vol 77, no 6, pp 6883–6896 [83] L Xu, Z Li, J Li, and W Hua (2016), “A novel bit-level image encryption algorithm based on chaotic maps,” Optics and Lasers in Engineering, Vol 78, pp 17 – 25 [84] S Lian (2008), Multimedia Content Encryption: Techniques and Applications Auerbach Publications [85] C E Shannon (Sept 1, 1945), “A mathematical theory of cryptography,” Bell System Technical Memo MM, Vol 45-110-02, pp 1–110+25 133 [86] M Kar, M K Mandal, D Nandi, A Kumar, and S Banik (2016), “Bit-plane encrypted image cryptosystem using chaotic, quadratic, and cubic maps,” IETE Technical Review, Vol 33, no 6, pp 651–661 [87] S Guo, Y Liu, L Gong, W Yu, and Y Gong (2018), “Bit-level image cryptosystem combining 2d h yper-chaos with a modified non-adjacent spatiotemporal chaos,” Multimedia Tools and Applications, Vol 77, no 16, pp 21109– 21130 [88] R K Singh, B Kumar, D K Shaw, and D A Khan (2018), “Level by level image compression-encryption algorithm based on quantum chaos map,” Journal of King Saud University - Computer and Information Sciences [89] N Masuda, G Jakimoski, K Aihara, and L Kocarev (2006), “Chaotic block ciphers: from theory to practical algorithms,” Circuits and Systems I: Regular Papers, IEEE Transactions on, Vol 53, no 6, pp 1341–1352 [90] A Saito and A Yamaguchi (2016), “Pseu dorandom number genera tion using chaotic true orbits of the bernoulli map,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 26, no 6, p 063122 [91] R Munir (2014), “A block-based image encryption algorithm in frequency domain using chaotic permutation,” in Telecommunication Systems Services and Applications (TSSA), 2014 8th International Conference on, pp 1–5, IEEE [92] Y Suryanto, K Ramli, et al (2015), “Chaos properties of the chaotic permutation generated by multi circular shrinking and expanding movement,” in Quality in Research (QiR), 2015 International Conference on, pp 65–68, IEEE [93] M Ahmad, H Chugh, A Goel, and P Singla (2013), “A chaos based method for eff icient cryptographic s-box design,” in Security in Computing and Communications: International Symposium, SSCC 2013, Mysore, India, August 2224, 2013 Proceedings (S M Thampi, P K Atrey, C.-I Fan, and G M Perez, eds.), (Berlin, Heidelberg), pp 130–137, Springer Berlin Heidelberg [94] M Ahmad, F Ahmad, Z Nasim, Z Bano, and S Zafar ( Aug 2015), “Designing chaos based strong substitution box,” in 2015 Eighth International Conference on Contemporary Computing (IC3), pp 97–100 [95] R L Devaney (2003), An Introduction to Chaotic Dynamical Systems 2nd Edition Westview Pr (Short Disc) [96] J Fridrich (1998), “Symmetric ciphers based on two-dimensional cha otic maps,” International Journal of Bifurcation and Chaos, Vol 08, no 06, pp 1259–1284 134 [97] A N Pisarchik, N J Flores-Carmona, and M Carpio-Valadez (2006), “Encryption and decryption of images with chaotic map lattices,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 16, no 3, p 033118 [98] D Arroyo, R Rhouma, G Alvarez, S Li, and V Fernandez (2008), “On the security of a new image encryption scheme based on chaotic map lattices,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 18, no 3, p 033112 [99] X Wang, X Zhu, and Y Zhang (2018), “An image encryption algorithm based on josephus traversing and mixed chaotic map,” IEEE Access, Vol 6, pp 23733–23746 [100] R Li, Q Liu, and L Liu (2019), “Novel image encryption algorithm based on improved Logistic map,” IET Image Processing, Vol 13, no 1, pp 125–134 [101] Z liang Zhu, W Zhang, K wo Wong, and H Yu (2011), “A chaos-based symmetric image encryption scheme using a bit-level permutation,” Information Sciences, Vol 181, no 6, pp 1171 – 1186 [102] C Fu, B bin Lin, Y sheng Miao, X Liu, and J jie Chen (2011), “A novel chaos-based bit-level permutation scheme for digital image encryption,” Optics Communications, Vol 284, no 23, pp 5415 – 5423 [103] T T K Hue, T M Hoang, and S Al Assad (2013), “Design and implementation of a chaotic cipher block chaining mode for image encryption,” in Advanced Technologies for Communications (ATC), 2013 International Conference on, pp 185–190, IEEE [104] Y Feng and X Yu ( Nov 2009), “A novel symmetric image encryption approach based on an invertible two-dimensional map,” in 2009 35th Annual Conference of IEEE Industrial Electronics, pp 1973–1978 [105] J A Gordon and H Retkin (1983), “Are big s-boxes best?,” in Cryptography: Proceedings of the Workshop on Cryptography Burg Feuerstein, Germany, March 29–April 2, 1982 (T Beth, ed.), (Berlin, Heidelberg), pp 257– 262, Springer Berlin Heidelberg [106] C Adams and S Tavares (1990), “Good s-boxes are easy to find,” in Advances in Cryptology — CRYPTO’ 89 Proceedings (G Brassard, ed.), (New York, NY), pp 612–615, Springer New York [107] M H Dawson and S E Tavares ( May 1991), “An expanded set of design criteria for substitution boxes and their use in strengthening des-like cryptosys- 135 tems,” in [1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings, pp 191–195 vol.1 [108] C Adams and S Tavares (1990), “The structured design of cryptographically good s-boxes,” J Cryptol., Vol 3, no 1, pp 27–41 [109] M Matsui (1994), “Linear cryptanalysis method for des cipher,” in Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory and Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings (T Helleseth, ed.), (Berlin, Heidelberg), pp 386–397, Springer Berlin Heidelberg [110] E Biham (1995), “On matsui’s linear cryptanalysis,” in Advances in Cryptology — EUROCRYPT’94 (A De Santis, ed.), (Berlin, Heidelberg), pp 341– 355, Springer Berlin Heidelberg [111] A F Webster and S E Tavares (1986), “On the design of s-boxes,” in Advances in Cryptology, CRYPTO ’85, (London, UK, UK), pp 523–534, Springer-Verlag [112] G Tang and X Liao (2005), “A method for designing dynamical s-boxes based on discretized chaotic map,” Chaos, Solitons & Fractals, Vol 23, no 5, pp 1901 – 1909 [113] J Detombe and S Tavares (1993), “Constructing large cryptographically strong s-boxes,” in Advances in Cryptology — AUSCRYPT ’92: Workshop on the Theory and Application of Cryptographic Techniques Gold Coast, Queensland, Australia, December 13–16, 1992 Proceedings (J Seberry and Y Zheng, eds.), (Berlin, Heidelberg), pp 165–181, Springer Berlin Heidelberg [114] E Biham and A Shamir (1991), “Differential cryptanalysis of des-like cryptosystems,” Journal of Cryptology, Vol 4, no 1, pp 3–72 [115] G Jakimoski and L Kocarev (2001), “Chaos and cryptography: block encryption ciphers based on chaotic maps,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol 48, no 2, pp 163–169 [116] G Zaibi, A Kachouri, F Peyrard, and D Fournier-Prunaret ( June 2009), “On dynamic chaotic s-box,” in 2009 Global Information Infrastructure Symposium, pp 1–5 [117] T T K Hue, T M Hoang, and D Tran ( July 2014), “Chaos-based s-box for lightweight block cipher,” in 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), pp 572–577 [118] Y Wang, K.-W Wong, X Liao, and T Xiang (2009), “A block cipher with 136 dynamic s-boxes bas ed on tent map,” Communications in Nonlinear Science and Numerical Simulation, Vol 14, no 7, pp 3089 – 3099 [119] D Lambi´c (2017), “A novel method of s-box design based on discrete chaotic map,” Nonlinear Dynamics, Vol 87, no 4, pp 2407–2413 [120] Y Zhang ( Jan 2018), “Test and verification of AES used for image encryption,” 3D Research, Vol 9, p [121] Y Liu, L Y Zhang, J Wang, Y Zhang, and K.-w Wong ( June 2016), “Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure,” Nonlinear Dynamics, Vol 84, p 2241 [122] F Özkaynak ( Jan 2018), “Brief review on application of nonlinear dynamics in image encryption,” Nonlinear Dynamics, p [123] Y Dai, H Wang, and Y Wang (2016), “Chaotic medical image encryption algorithm based on bit-plane decomposition,” International Journal of Pattern Recognition and Artificial Intelligence, Vol 30, no 04, p 1657001 [124] J Liu, D Yang, H Zhou, and S Chen ( Nov 2017), “A digital image encryption algorithm based on bit-planes and an improved Logistic map,” Multimedia Tools and Applications, p [125] J xin Chen, Z liang Zhu, C Fu, L bo Zhang, and Y Zhang (2015), “An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach,” Communications in Nonlinear Science and Numerical Simulation, Vol 23, no 1, pp 294 – 310 [126] G Ye and K.-W Wong (2012), “An efficient chaotic image encryption algorithm ba sed on a generalized Arnold map,” Nonlinear Dynamics, Vol 69, no 4, pp 2079–2087 [127] M Keyvanpour and F Merrikh-Bayat (2011), “An effective chaos-based image watermarking scheme using fractal coding,” Procedia Computer Science, Vol 3, pp 89–95 [128] W K Tang and Y Liu (2011), “Formation of high-dimensional chaotic maps and their uses in cryptography,” in Chaos-Based Cryptography, pp 99–136, Springer [129] M Falcioni, L Palatella, S Pigolotti, and A Vulpiani (2005), “Properties making a chaotic system a good pseudo random number generator,” Physical Review E, Vol 72, no 1, p 016220 [130] T K H Ta, T M Hoang, A Braeken, and K Steenhaut (2017), “On construction of multi-maximum distance separable (MDS) matrix generator based 137 on high dimension al Cat matrices,” Optik-International Journal for Light and Electron Optics, Vol 131, pp 454–466 [131] Y Wu, Z Hua, and Y Zhou (2016), “n-dimensional discrete Cat map generation using Laplace expansions,” IEEE transactions on cybernetics, Vol 46, no 11, pp 2622–2633 [132] D Giry “Bluekrypt: Cryptographic key length recommendation; https://www.keylength.com/en.” Accessed: 2019-11-2 [133] E Yavuz (2019), “A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme,” Optics & Laser Technology, Vol 114, pp 224 – 239 [134] Y Li, C Wang, and H Chen (2017), “A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation,” Optics and Lasers in Engineering, Vol 90, pp 238 – 246 [135] X Wang and H li Zhang (2015), “A color image encryption with heterogeneous bit-permutation and correlated chaos,” Optics Communications, Vol 342, pp 51 – 60 [136] Y Wu, S Member, J P Noonan, L Member, S Agaian, and S Member (2011), “NPCR and UACI randomness tests for image encryption,” in Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT) [137] G Maze (2003), Algebraic methods for constructing one-way trapdoor functions PhD thesis, University of Notre Dame, United States [138] K Chain and W.-C Kuo (2013), “A new digital signature scheme based on chaotic maps,” Nonlinear Dynamics, Vol 74, no 4, pp 1003–1012 [139] A U Rehman, J S Khan, J Ahmad, and S O Hwang (2016), “A new image encryption scheme based on dynamic S-Boxes and chaotic maps,” 3D Research, Vol 7, no 1, pp 1–8 [140] A Medio and M Lines (2001), Nonlinear Dynamics: A Primer Cambridge University Press [141] Y Liu, S Tian, W Hu, and C Xing (2012), “Design and statistical analysis of a new chaotic block cipher for wireless sensor networks,” Communications in Nonlinear Science and Numerical Simulation, Vol 17, no 8, pp 3267 – 3278 [142] L Y Zhang, C Li, K.-W Wong, S Shu, and G Chen (2012), “Cryptanalyzing a chaos-based image encryption algorithm using alternate structure,” Journal of Systems and Software, Vol 85, no 9, pp 2077 – 2085 Selected papers 138 from the 2011 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2011) [143] C Li, L Y Zhang, R Ou, K.-W Wong, and S Shu (2012), “Breaking a novel colour image encryption algorithm based o n chaos,” Nonlinear Dynamics, Vol 70, no 4, pp 2383–2388 [144] C Zhu, C Liao, and X Deng (2013), “Breaking and improving an image encryption scheme based on tota l shuffling scheme,” Nonlinear Dynamics, Vol 71, no 1-2, pp 25–34 [145] H Heys and S Tavares (1995), “Avalanche characteristics of substitutionpermutation encryption networks,” Computers, IEEE Transactions on, Vol 44, no 9, pp 1131–1139 [146] D Stinson (2005), Cryptography: Theory and Practice CRC Press, 3rd ed [147] T St Denis (26 November 2001), “Advanced encryption standard (AES),” tech rep., Federal Information Processing Standards [148] P Paillier and I Verbauwhede, eds (2007), PRESENT: An Ultra-Lightweight Block Cipher, (Berlin, Heidelberg), Springer Berlin Heidelberg [149] J L Massey (1993), “SAFER K-64: A byte-oriented block-ciphering algorithm,” in International Workshop on Fast Software Encryption, pp 1–17, Springer [150] X.-J Tong (2013), “Design of an image encryption scheme based on a multiple chaotic map,” Communications in Nonlinear Science and Numerical Simulation, Vol 18, no 7, pp 1725 – 1733 [151] A Kanso and M Ghebleh (2012), “A novel image encryption algorithm based on a 3D chaotic map,” Communications in Nonlinear Science and Numerical Simulation, Vol 17, no 7, pp 2943 – 2959 [152] X Zhang, L Shao, Z Zhao, and Z Liang (2014), “An image encryption scheme based on constructing large permutation with chaotic sequence,” Computers and Electrical Engineering, Vol 40, no 3, pp 931 – 941 Special Issue on Image and Video Processing [153] T T K Hue, C V Lam, T M Hoang, and S Al Assad ( Dec 2012), “Implementation of secure spn chaos-based cryptosystem on fpga,” in Signal Processing and Information Technology (ISSPIT), 2012 IEEE International Symposium on, pp 000129–000134 [154] Y Zhang, D Xiao, Y Shu, and J Li (2013), “A novel image encryption scheme 139 based on a linear hyperbolic chaotic system of partial differential equations,” Signal Processing: Image Communication, Vol 28, no 3, pp 292 – 300 [155] E A Arnold and A Avez (1968), Ergodic Problems of Classical Mechanics Benjamin [156] F Rannou (1974), “Numerical study of discrete plane area-preserving mappings,” Astron & Astrophys., Vol 31, pp 289–301 [157] E A Jackson (1991), Perspectives of Nonlinear Dynamics Cambridge University Press 140 ... Shift Register Thanh ghi dịch phản hồi tuyến tính NIST National Institute of Standards Viện quốc gia chuẩn công and Technology nghệ NPCR Number of Pixels Change Rate Tỷ lệ số điểm ảnh thay đổi giá... vectors or matrices det Định thức ma trận rand i rcv _rd Dãy số ngẫu nhiên, hay rand viết ngắn gọn random Giá trị khôi phục rd, viết tắt recovered random sequence Xn Véctơ biến trạng thái (x,... tục mật mã hóa nhanh an tine SPN toàn Substitution-Permutation Net- Mạng thay thế-hoán vị work SV Secondary vertex Điểm thứ cấp UACI Unified Average Changing Inten- Cường độ thay đổi trung bình