1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điều khiển dao động kết cấu dựa trên mô hình sử dụng lý thuyết mờ và đại số gia tử248

143 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 143
Dung lượng 6,43 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LÊ TÙNG ANH ĐIỀU KHIỂN DAO ĐỘNG KẾT CẤU DỰA TRÊN MƠ HÌNH SỬ DỤNG LÝ THUYẾT MỜ VÀ ĐẠI SỐ GIA TỬ LUẬN ÁN TIẾN SĨ CƠ HỌC Hà Nội - 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LÊ TÙNG ANH ĐIỀU KHIỂN DAO ĐỘNG KẾT CẤU DỰA TRÊN MƠ HÌNH SỬ DỤNG LÝ THUYẾT MỜ VÀ ĐẠI SỐ GIA TỬ Ngành: Cơ học Mã số: 9440109 LUẬN ÁN TIẾN SĨ CƠ HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS BÙI HẢI LÊ TS BÙI VĂN BÌNH Hà Nội - 2021 LỜI CAM ĐOAN Tôi xin cam đoan nội dung trình bày luận án nghiên cứu hướng dẫn khoa học PGS.TS Bùi Hải Lê TS Bùi Văn Bình Các số liệu, kết nghiên cứu luận án trung thực chưa công bố cơng trình khác Hà Nội, ngày NGƯỜI HƯỚNG DẪN PGS.TS Bùi Hải Lê tháng 01 năm 2021 NGHIÊN CỨU SINH TS Bùi Văn Bình i Lê Tùng Anh LỜI CẢM ƠN Tôi xin gửi lời biết ơn sâu sắc chân thành đến hai thầy hướng dẫn PGS.TS Bùi Hải Lê - Viện Cơ khí - Trường Đại học Bách khoa Hà Nội TS Bùi Văn Bình - Khoa Cơ khí - Trường Đại học Điện lực Các thầy tận tình hướng dẫn, bảo tơi suốt q trình nghiên cứu để tơi hồn thành luận án Tơi xin gửi lời cám ơn đến thành viên khác nhóm nghiên cứu giúp đỡ trong suốt thời gian thực luận án Tôi xin trân trọng cảm ơn Bộ môn Cơ học vật liệu kết cấu - Viện Cơ khí, Phịng Đào tạo - Trường Đại học Bách khoa Hà Nội tạo điều kiện thuận lợi, tận tình giúp đỡ đóng góp ý kiến q báu cho tơi q trình thực luận án Cuối cùng, tơi xin chân thành cảm ơn gia đình, bạn bè đồng nghiệp khuyến khích, hỗ trợ, động viên tơi suốt thời gian qua Hà Nội, ngày tháng 01 năm 2021 NGHIÊN CỨU SINH Lê Tùng Anh ii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT vii DANH MỤC CÁC BẢNG xii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ xiii MỞ ĐẦU CHƯƠNG TỔNG QUAN VỀ VẤN ĐỀ NGHIÊN CỨU 1.1 Tóm lược dao động kết cấu 1.2 Các giải pháp giảm dao động có hại kết cấu 1.3 Điều khiển chủ động kết cấu 1.3.1 Khái niệm 1.3.2 Thuật toán điều khiển chủ động 1.3.3 Máy kích động phương thức điều khiển chủ động 1.3.3.1 Các loại máy kích động 1.3.3.2 Các phương thức điều khiển 1.3.4 Phương trình trạng thái kết cấu điều khiển chủ động 1.4 Tình hình nghiên cứu số nhận xét 1.4.1 Tình hình nghiên cứu 11 12 12 1.4.1.1 Một số ứng dụng điều khiển chủ động kết cấu 12 1.4.1.2 Điều khiển không sử dụng lý thuyết mờ 15 1.4.1.3 Điều khiển dựa lý thuyết mờ 16 1.4.1.4 Điều khiển dựa mơ hình 18 iii 1.4.1.5 Điều khiển dựa lý thuyết đại số gia tử 1.4.2 Một số nhận xét 21 22 1.5 Đề xuất nội dung nghiên cứu luận án 23 1.6 Kết luận chương 23 CHƯƠNG CƠ SỞ LÝ THUYẾT 25 2.1 Mơ hình nghiên cứu tổng qt 25 2.2 Điều khiển dựa lý thuyết mờ 27 2.2.1 Các khái niệm 27 2.2.1.1 Tập mờ 27 2.2.1.2 Các phép toán tập mờ 28 2.2.1.3 Hợp thành mờ 28 2.2.1.4 Giải mờ 29 2.2.1.5 Biến ngôn ngữ 29 2.2.2 Bộ đgrg 189, 439-448 [41] Wenzhong Q., Jincai S., Yang, Q (2004), Active control of vibration using a fuzzy control method, Journal of Sound and Vibration 275, 917–930 [42] Lin J., Wei-Zheng L (2006), Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam, Journal of Sound and Vibration 296, 567–582 [43] Magdalene M., Yannis M., Georgios E.S (2010), Fuzzy control optimized by PSO for vibration suppression of beams, Control Engineering Practice 18, 618–629 [44] Kwan S.P., Koh H.M., Ok S.Y., Seo C.W (2005), Fuzzy supervisory control of earthquake-excited cable-stayed bridges, Engineering Structures 27, 1086– 1100 [45] A Sagirli, C.O Azeloglu, R Guclu, H Yazici (2011), Self-tuning fuzzy logic control of crane structures against earthquake induced vibration, Nonlinear Dynamics, 64 375-384 [46] J Lin, Y Zheng (2012), Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning, Journal of Sound and Vibration, 331 3677-3694 [47] Park K.S, Koh H.M, Ok S.Y (2002), Active control of earthquake excited structures using fuzzy supervisory technique, Advances in Engineering Software 33, 761–768 [48] Park K.S, Koh H.M, Seo C.W, (2004), Independent modal space fuzzy control of earthquake-excited structures, Engineering Structures 26, 279–289 [49] Al-Dawod M, Samali B, Li J (2006), Experimental verification of an active mass driver system on a five-storey model using a fuzzy controller, Struct Control Health Monit 13, 917–943 Trang 120 [50] Reigles D.G., Symans M.D (2006), Supervisory fuzzy control of a baseisolated benchmark building utilizing a neuro-fuzzy model of controllable fluid viscous dampers, Struct Control Health Monit 13, 724–747 [51] Dounis AI, Tiropanis P, Syrcos GP, Tseles D (2007), Evolutionary fuzzy logic control of base-isolated structures in response to earthquake activity, Struct Control Health Monit 14, 62–82 [52] Pourzeynali S., Lavasani H.H., Modarayi A.H (2007), Active control of high rise building structures using fuzzy logic and genetic algorithms, Engineering Structures 29, 346–357 [53] Guclu, R and Yazici, H (2008), Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers, Journal of Sound and Vibration 318, 36-49 [54] Li L., Song G., Ou J (2010), Hybrid active mass damper (AMD) vibration suppression of nonlinear high-rise structure using fuzzy logic control algorithm under earthquake excitations, Struct Control Health Monit, DOI: 10.1002/stc.402 [55] M.E Uz, M.N Hadi (2014), Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multiobjective genetic algorithm, Engineering Structures, 69 135-148 [56] K.-S Park, S.-Y Ok (2015), Modal-space reference-model-tracking fuzzy control of earthquake excited structures, Journal of Sound and Vibration, 334 136-150 [57] Huỳnh Thái Hoàng (2006), Hệ thống điều khiển thông minh, Nhà xuất Đại học Quốc gia thành phố Hồ Chí Minh [58] Hak-Keung Lam, Frank Hung-Fat Leung (2011), Stability Analysis of FuzzyModel-Based Control Systems, Springer-Verlag Berlin Heidelberg [59] A Agrawal, J Yang (2000), Compensation of time‐delay for control of civil engineering structures, Earthquake Engineering & Structural Dynamics, 29 37-62 [60] H Du, N Zhang (2007), Energy‐to‐peak control of seismic‐excited buildings with input delay, Structural Control and Health Monitoring, 14 947-970 [61] T Hong, P.C Hughes (2001), Effect of time delay on the stability of flexible structures with rate feedback control, Journal of Vibration and Control, 3349 [62] X Zhang, J Xu (2016), Time delay identifiability and estimation for the delayed linear system with incomplete measurement, Journal of Sound and Vibration, 361 330-340 [63] H Du, N Zhang, F Naghdy (2011), Actuator saturation control of uncertain structures with input time delay, Journal of Sound and Vibration, 330 43994412 [64] P.M Nia, R Sipahi (2013), Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays, Journal of Sound and Vibration, 332 3589-3604 [65] F An, W.-d Chen, M.-q Shao (2014), Dynamic behavior of time-delayed acceleration feedback controller for active vibration control of flexible structures, Journal of Sound and Vibration, 333 4789-4809 Trang 121 [66] T Zhang, H.G Li, Z.Y Zhong, G.P Cai (2015), Hysteresis model and adaptive vibration suppression for a smart beam with time delay, Journal of Sound and Vibration, 358 35-47 [67] M Sabatini, G.B Palmerini, N Leonangeli, P Gasbarri (2014), Analysis and experiments for delay compensation in attitude control of flexible spacecraft, Acta Astronautica, 104 276-292 [68] M Sabatini, P Gasbarri, G.B Palmerini (2015), Delay compensation for controlling flexible space multibodies: Dynamic modeling and experiments, Control Engineering Practice, 45 147-162 [69] S.Y Yoon, L Di, Z Lin (2016), Unbalance compensation for AMB systems with input delay: An output regulation approach, Control Engineering Practice, 46 166-175 [70] J Zhang, Y Li, C Lv, J Gou, Y Yuan (2017), Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking, Mechanical Systems and Signal Processing, 87 45-63 [71] R Adhikari, H Yamaguchi (1997), Sliding mode control of buildings with ATMD, Earthquake engineering & structural dynamics, 26 409-422 [72] Y.M Sam, J.H Osman, M.R.A Ghani (2004), A class of proportional-integral sliding mode control with application to active suspension system, Systems & control letters, 51 217-223 [73] S.-B Choi, Y.-M Han (2007), Vibration control of electrorheological seat suspension with human-body model using sliding mode control, Journal of Sound and Vibration, 303 391-404 [74] V.S Deshpande, B Mohan, P Shendge, S Phadke (2014), Disturbance observer based sliding mode control of active suspension systems, Journal of Sound and Vibration, 333 2281-2296 [75] K Dhanalakshmi, M Umapathy, D Ezhilarasi (2016), Shape memory alloy actuated structural control with discrete time sliding mode control using multirate output feedback, Journal of Vibration and Control, 22 1338-1357 [76] K.-G Sung, Y.-M Han, J.-W Cho, S.-B Choi (2008), Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller, Journal of Sound and Vibration, 311 1004-1019 [77] N Yagiz, Y Hacioglu, Y Taskin (2008), Fuzzy sliding-mode control of active suspensions, IEEE Transactions on industrial electronics, 55 3883-3890 [78] J Lin, R.-J Lian, C.-N Huang, W.-T Sie (2009), Enhanced fuzzy sliding mode controller for active suspension systems, Mechatronics, 19 1178-1190 [79] Chen H-Y, Liang J-W, Wu J-W (2013), Active pneumatic vibration control by using pressure and velocity measurements and adaptive fuzzy sliding-mode controller, Sensors 13:8431-8444 [80] Soltanpour MR, Khooban MH (2013), A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator, Nonlinear Dynamics 74:467-478 [81] Do HT, Park HG, Ahn KK (2014), Application of an adaptive fuzzy sliding mode controller in velocity control of a secondary controlled hydrostatic transmission system, Mechatronics 24:1157-1165 Trang 122 [82] D.X Phu, N.V Quoc, J.-H Park, S.-B Choi (2014), Design of a novel adaptive fuzzy sliding mode controller and application for vibration control of magnetorheological mount, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228 22852302 [83] M Sharma, S Singh (2010), Fuzzy sliding mode control of plate vibrations, Shock and Vibration, 17 71-92 [84] Q.H Ngo, N.P Nguyen, C.N Nguyen, T.H Tran, K.-S Hong (2015), Fuzzy sliding mode control of container cranes, International Journal of Control, Automation and Systems, 13 419-425 [85] Chiang W-L, Yeh K, Liu M-Y (2000), Adaptive fuzzy sliding mode control for base-isolated buildings, International Journal on Artificial Intelligence Tools 9:493-508 [86] Kim SB, Yun CB (2000), Sliding mode fuzzy control: Theory and verification on a benchmark structure, Earthquake Engineering & Structural Dynamics 29:1587-1608 [87] Wang AP, Lee CD (2002), Fuzzy sliding mode control for a building structure based on genetic algorithms, Earthquake Engineering & Structural Dynamics 31:881-895 [88] H Alli, O Yakut, Fuzzy sliding-mode control of structures, Engineering Structures, 27 (2005) 277-284 [89] Wang, A P., Lin, Y H (2007), Vibration control of a tall building subjected to earthquake excitation, Journal of Sound and Vibration 299, 757–773 [90] Li L, Song G, Ou J (2009), Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control, Journal of Vibration and Control [91] Thenozhi S, Yu W (2014a), Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation, International Journal of Systems Science, 1-10 [92] N.C Ho, W Wechler (1990), Hedge algebras: an algebraic approach to structure of sets of linguistic truth values, Fuzzy sets and systems, 35 281-293 [93] N.C Ho, W Wechler (1992), Extended hedge algebras and their application to fuzzy logic, Fuzzy sets and systems, 52 259-281 [94] NGUYEN CH, TRAN DK, Van Nam H, NGUYEN HC (1999), Hedge algebras, linguistic-value logic and their application to fuzzy reasoning, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 7:347-361 [95] N Ho, H Nam (2002), Towards an algebraic foundation for a Zadeh fuzzy logic, Fuzzy Set and System, 129 229-254 [96] N.C Ho (2007), A topological completion of refined hedge algebras and a model of fuzziness of linguistic terms and hedges, Fuzzy Sets and Systems, 158 436-451 [97] N.C Ho, N Van Long (2007), Fuzziness measure on complete hedge algebras and quantifying semantics of terms in linear hedge algebras, Fuzzy Sets and Systems, 158 452-471 Trang 123 [98] Nguyen CH, Pedrycz W, Duong TL, Tran TS (2013), A genetic design of linguistic terms for fuzzy rule based classifiers, International Journal of Approximate Reasoning 54:1-21 [99] Nguyen C-H, Pedrycz W (2014), A construction of sound semantic linguistic scales using 4-tuple representation of term semantics, International Journal of Approximate Reasoning 55:763-786 [100] Nguyen CH, Tran TS, Pham DP (2014), Modeling of a semantics core of linguistic terms based on an extension of hedge algebra semantics and its application, Knowledge-Based Systems 67:244-262 [101] N.C Ho, V.N Lan, L.X Viet (2008), Optimal hedge-algebras-based controller: Design and application, Fuzzy Sets and Systems, 159 968-989 [102] H.-L Bui, C.-H Nguyen, N.-L Vu, C.-H Nguyen (2015), General design method of hedge-algebras-based fuzzy controllers and an application for structural active control, Applied Intelligence, 43 251-275 [103] H.-L Bui, D.-T Tran, N.-L Vu (2012), Optimal fuzzy control of an inverted pendulum, Journal of vibration and control, 18 2097-2110 [104] N.D Duc, N.-L Vu, D.-T Tran, H.-L Bui (2012), A study on the application of hedge algebras to active fuzzy control of a seism-excited structure, Journal of Vibration and Control, 18 2186-2200 [105] N.D Anh, H.-L Bui, N.-L Vu, D.-T Tran (2013), Application of hedge algebra-based fuzzy controller to active control of a structure against earthquake, Structural Control and Health Monitoring, 20 483-495 [106] H.-L Bui, C.-H Nguyen, V.-B Bui, K.-N Le, H.-Q Tran (2015), Vibration control of uncertain structures with actuator saturation using hedge-algebrasbased fuzzy controller, Journal of Vibration and Control, 1077546315606601 [107] D Vukadinović, M Bašić, C.H Nguyen, N.L Vu, T.D Nguyen (2014), Hedge-algebra-based voltage controller for a self-excited induction generator, Control Engineering Practice, 30 78-90 [108] Pei Z., Ruan D., Liu J., Xu Y (2010), Linguistic values based intelligent information processing, World Scientific [109] Vukadinovic D et al (2011), Fuzzy Control Systems, Nova Publishers, USA [110] S Sivanandam, S Sumathi, S Deepa (2007), Introduction to fuzzy logic using MATLAB, Springer [111] T.J Ross (2010), Fuzzy logic with engineering applications, John Wiley & Sons [112] A Agrawal, J Yang (1997), Effect of fixed time delay on stability and performance of actively controlled civil engineering structures, Earthquake Engineering & Structural Dynamics, 26 1169-1185 [113] H Hu, E Dowell, L Virgin (1998), Stability estimation of high dimensional vibrating systems under state delay feedback control, Journal of Sound and Vibration, 214 497-511 [114] R.C Dorf, R.H Bishop (2011), Modern control systems, Prentice Hall [115] M Jamei, M Mahfouf∗, D.A Linkens (2004), Elicitation and fine-tuning of fuzzy control rules using symbiotic evolution, Fuzzy Sets and Systems 147 5774 Trang 124 ... 1.4.1.2 Điều khiển không sử dụng lý thuyết mờ 15 1.4.1.3 Điều khiển dựa lý thuyết mờ 16 1.4.1.4 Điều khiển dựa mơ hình 18 iii 1.4.1.5 Điều khiển dựa lý thuyết đại số gia tử 1.4.2 Một số nhận...BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LÊ TÙNG ANH ĐIỀU KHIỂN DAO ĐỘNG KẾT CẤU DỰA TRÊN MƠ HÌNH SỬ DỤNG LÝ THUYẾT MỜ VÀ ĐẠI SỐ GIA TỬ Ngành: Cơ học Mã số: 9440109 LUẬN ÁN... điều khiển 1.3.4 Phương trình trạng thái kết cấu điều khiển chủ động 1.4 Tình hình nghiên cứu số nhận xét 1.4.1 Tình hình nghiên cứu 11 12 12 1.4.1.1 Một số ứng dụng điều khiển chủ động kết cấu

Ngày đăng: 11/03/2022, 20:56

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w