1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Lý thuyết trường điên tử P1 docx

7 729 5

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 104,91 KB

Nội dung

Chương 1 - Trang 1 Chương 1: Một số khái niệm cơ bản 1.1. Định nghĩa về “Trường điện từ” Lý thuyết Trường điện từ là một ngành vật nghiên cứu về các hiện tượng điệntừ trong tổng thể của chúng là Trường điện từ. Trường điện từ được sinh ra bởi các hạt mang điện và sự chuyển động của chúng. Trường điện từ được sinh ra sau đó đến lượt nó lại tương tác với các hạt mang điện. Trường điện từ được định nghĩa như sau: Trường điện từ là một dạng vật chất cơ bản, chuyển động với vận tốc c trong mọi hệ quy chiếu quán tính trong chân không. Nó thể hiện sự tồn tại và vận động qua những tương tác với dạng vật chất khác là những hạt hoặc những môi trường chất mang điện. 1.2. Sơ lược về “Lý thuyết Trường điện từ” Lý thuyết Trường điện từ được nhà bác học James Maxwell tổng hợp từ các thuyết đã tồn tại trước đây như thuyết về điện trường tĩnh, thuyết về điện động học, thuyết về từ trường tĩnh. thuyết tổng hợp này nghiên cứu những vẫn đề liên quan đến các hạt mang điện, dòng điện, nam châm, sóng điện từ (ánh sáng, sóng vô tuyến, ). Khái niệm cơ bản trong lý thuyết Trường điện từTrường điện từ. thuyết này nghiên cứu các hiện tượng điệntừ dưới đây: • điện trường tĩnh được sinh ra bởi các hạt mang điện đứng yên; • từ trường tĩnh được sinh ra bởi các dòng điện không đổi; • từ động là hiện tượng từ được sinh ra bởi dòng điện biến đổi theo thời gian; • điện động liên quan đến các tương tác động học giữa các dòng điện; • vô tuyến điện liên quan đến các hiện tượng truyền sóng điện từ. Chương 1 - Trang 2 1.3. Các biến trạng thái cơ bản của trường điện từ Theo định nghĩa chung, biến trạng thái của một hệ là những biến được định nghĩa ra để trực tiếp hay gián tiếp đo, biểu diễn trạng thái và quá trình động lực học của hệ, hoặc đo, biểu diễn năng lực tương tác của hệ. Đối với trường điện từ, có hai biến trạng thái là véctơ cường độ điện trường E → và véctơ cường độ từ cảm B → . Chúng đo năng lực tác động lực của trường điện từ đối với môi trường chất. 1.3.1. Véctơ cường độ điện trường → E Biến trạng thái này đại diện cho mặt điện trường của trường điện từ. Trong môi trường có hệ số điện môi ε, một điện tích điểm Q gây ra tại điểm M cũng ở trong môi trường đó một điện trường có véctơ cường độ điện trường E → có biểu thức như sau: →→ = 0 2 Q Er 4r πε (1.1) trong đó r là khoảng cách từ điện tích điểm Q đến điểm M và 0 r → là véctơ đơn vị nằm trên đường nối từ điện tích Q đến điểm M và có chiều luôn luôn hướng từ từ điện tích Q đến điểm M (hình 1.1). Như vậy véctơ cường độ điện trường do điện tích dương gây ra luôn hướng ra xa điện tích dương và véctơ cường độ điện trường do điện tích âm gây ra luôn hướng vào nó. Nếu tại điểm M, ta đặt một điện tích q thì điện trường E → của điện tích Q sẽ tác dụng lên điện tích q một lực Coulomb F → được tính như sau: →→→ == 0 2 Qq FqEr 4r πε (1.2) Như vậy giữa hai điện tích trái dấu sẽ tồn tại lực hút và giữa hai điện tích cùng dấu sẽ tồn tại lực đẩy. + r 0 r → E → Q M – r 0 r → E → Q M Hình 1.1. Điện trường do điện tích gây ra tại một điểm Chương 1 - Trang 3 Nếu trong môi trường nói trên, tồn tại n điện tích điểm Q i (với i = 1 → n) thì véctơ cường độ điện trường tổng E → do toàn bộ các điện tích này cùng gây ra tại một điểm M được xác định theo nguyên xếp chồng điện trường: →→→ == == ∑∑ nn i i0i 2 i1i1 i Q EEr 4rπε (1.3) với i E → là véctơ cường độ điện trường do mỗi điện tích Q i gây ra tại điểm M. Nếu tại điểm M, ta đặt một điện tích q thì lực Coulomb tổng F → do điện trường tổng E → tác dụng lên điện tích q sẽ là: →→→→→ === ==== ∑∑∑ nnn i i0ii 2 i1i1i1 i Qq FqEqErF 4rπε (1.4) trong đó i F → là lực Coulomb do mỗi điện trường i E → (gây ra bởi điện tích Q i ) tác dụng lên điện tích q. Trong hệ đơn vị SI (tức hệ MKSA), cường độ điện trường E có đơn vị là V/m. 1.3.2. Véctơ từ cảm → B Biến trạng thái này đại diện cho mặt từ trường của trường điện từ. Theo vật cổ điển, từ trường do dòng điện sinh ra. Ở phạm vi vi mô, một electron quay chung quanh hạt nhân cũng tạo nên dòng điện, được gọi là dòng điện nguyên tử, cũng tạo nên một từ trường. Để biểu diễn và đo năng lực tác dụng lực của từ trường, người ta định nghĩa véctơ từ cảm B → . Khi có một vật có điện tích dq chuyển động với vận tốc v → trong một từ trường có từ cảm B → thì từ trường sẽ tác dụng lên vật này một lực Lorenx về từ m dF → được xác định như sau: →→→ =∧ m dFdq(vB) (1.5) trong đó ký hiệu ∧ được dùng để biểu diễn tích hữu hướng của hai véctơ. Nếu đó là một đoạn dây dẫn dài dl có dòng điện i chạy qua thì lực Lorenx về từ do từ trường tác dụng lên đoạn dây dẫn này sẽ là: →→→ =∧ m dFi(dlB) (1.6) trong đó dl → là véctơ có chiều cùng chiều với dòng điện i chạy qua đoạn dây dẫn. Chương 1 - Trang 4 Trong hệ đơn vị SI, từ cảm B có đơn vị là Tesla (T). Trong hệ đơn vị CGSM, từ cảm B được đo bằng Gauss với 1 T = 10 4 Gauss. 1.4. Các biến khác về trạng thái và thông số về hành vi của trường và môi trường Khái niệm về biến trạng thái đã được đề cập ở mục 1.3 bên trên. Thông số hành vi biểu diễn tính quy luật các hoạt động, hành vi của một thực thể trong quá trình tương tác với thực thể khác. Khi trong không gian của trường điện từ tồn tại một môi trường vật chất nào đó thì dưới kích thích của trường điện từ, trong môi trường có thể xảy ra các hiện tượng như phân cực điện, phân cực từ hay dẫn điện (tùy theo loại môi trường). Để đo trạng thái của các hiện tượng này (tức là đo tương tác động lực học giữa trường điện từ và môi trường) và để biểu diễn phản ứng của môi trường về ba mặt đó, ngoài véctơ cường độ điện trường E → và véctơ từ cảm B → của trường điện từ, cần định nghĩa thêm một số biến trạng thái của hệ trường-môi trường và thông số hành vi của môi trường. 1.4.1. Các biến trạng thái và thông số hành vi về phân cực điện Trong nhiều chất điện môi được hiểu là những môi trường chỉ có những hạt mạng điện ràng buộc, dưới tác dụng của điện trường E → , các điện tử ràng buộc (liên kết) tiếp nhận năng lượng điện trường và dịch chuyển ra khỏi vị trí cân bằng, tâm quỹ đạo điện tử bị kéo ra xa những nút có điện tích dương một đoạn l và do vậy hình thành nên những lưỡng cực điện. Đó chính là hiện tượng phân cực điện môi. Trạng thái phân cực của lưỡng cực điện được đo bằng véctơ momen điện → p được tính như sau: →→ = pql (1.7) với q là điện tích của mỗi cực của lưỡng cực và l → là véctơ có độ lớn bằng khoảng cách l giữa hai cực của lưỡng cực (chính là độ lệch giữa tâm quỹ đạo điện tử và nút có điện tích dương), có phương nằm trên đường nối giữa hai cực và có chiều từ tâm quỹ đạo điện tử đến nút có điện tích dương. Nếu lân cận ở mỗi điểm trong môi trường, số lưỡng cực tính trung bình cho một đơn vị thể tích là N thì trạng thái phân cực ở mỗi điểm được đo bằng một biến trạng thái được gọi là véctơ phân cực điện → P : Chương 1 - Trang 5 →→ = PNp (1.8) Trạng thái phân cực của môi trường, được đo bằng véctơ phân cực điện P → , tỷ lệ với cường độ điện trường E → : →→ = P0 PkE ε (1.9) với k P là hệ số phân cực điện của môi trường. Đây là thông số hành vi phân cực điện của điện môi. ε 0 là hệ số điện môi của môi trường chân không: 9 0 1 10F/m 36 − ε=⋅ π Từ đó, người ta định nghĩa thêm biến trạng thái véctơ dịch chuyển điện → D : →→→→→→ =+=+== 00P0r DPE(1k)EEE εεεεε (1.10) trong đó ε r = 1 + k P được gọi là hệ số điện môi tương đối và ε = ε 0 ε r là hệ số điện môi tuyệt đối của môi trường. Đây cũng là các thông số hành vi của điện môi. ε r không có đơn vị. Hệ số điện môi tương đối của chân không ε r = 1. Trong hệ đơn vị SI, đại lượng dịch chuyển điện D có đơn vị là C/m 2 . 1.4.2. Các biến trạng thái và thông số hành vi về phân cực từ (từ hóa) Trong nhiều chất từ môi hay vật liệu từ được hiểu là những môi trường có các dòng điện phân tử ràng buộc, dưới tác dụng của từ trường B → , các spin và dòng điện phân tử, giống những thanh nam châm, thường xoay trục lại ít nhiều theo chiều của véctơ từ cảm B → và do vậy hình thành nên những cực từ nhỏ, thường thuận chiều với từ trường B → . Đó chính là hiện tượng phân cực về từ hay còn gọi là hiện tượng từ hóa. Thông số đặc trưng cho một cực từ có dòng điện i chảy theo một vòng có bề mặt S là véctơ momen từ → m được tính như sau: →→ = miS (1.11) với S → là véctơ có độ lớn bằng diện tích S, có phương vuông góc với bề mặt này và có chiều được xác định từ chiều của dòng điện i bằng quy tắc vặn nút chai thuận. Nếu lân cận ở mỗi điểm trong môi trường, tính trung bình trong một đơn vị thể tích có số cực từ xoay chiều lại theo chiều của từ trường B → là N thì trạng thái phân cực Chương 1 - Trang 6 từ ở mỗi điểm được đo bằng một biến trạng thái được gọi là véctơ cường độ phân cực từ → M : →→ = MNm (1.12) Như vậy từ trường B → không chỉ liên quan đến sự phân bố dòng điện tự do ngoài mà còn liên quan đến các dòng điện phân tử hoặc spin tồn tại bên trong các cấu tử cơ bản hình thành nên môi trường, do vậy khá phức tạp. Để tiện khảo sát, người ta xây dựng thêm một biến trạng thái mới là véctơ cường độ từ trường → H : →→→ =+ 0 B(HM) µ (1.13) với µ 0 là hệ số từ thẩm của môi trường chân không: 7 0 410H/m − µ=π⋅ Với (1.13), người ta xem trường B → gồm hai thành phần là H 0 BH →→ =µ ứng với các dòng điện tự do ngoài và M 0 BM →→ =µ ứng với các dòng điện phân tử hoặc spin. Đối với môi trường thuận từ, hai thành phần này thuận chiều nhau và hợp thành B → . Giống như với phân vực điện, người ta cũng định nghĩa những thông số hành vi về phân cực từ của từ môi. Trước hết là hệ số phân cực từ k M : →→ = M MkH (1.14) Suy ra: →→→→→→ =+=+== 00M0r B(HM)(1k)HHH µµµµµ (1.15) trong đó µ r = 1 + k M được gọi là hệ số từ thẩm tương đối và µ = µ 0 µ r là hệ số từ thẩm tuyệt đối của môi trường. Đây cũng là các thông số hành vi của từ môi. µ r không có đơn vị. Hệ số từ thẩm tương đối của chân không µ r = 1. Trong hệ đơn vị SI, cường độ từ trường H có đơn vị là A/m. 1.4.3. Các biến trạng thái và thông số hành vi về dòng điện trong vật dẫn Trong các phần trên, ta xét những biến trạng thái phân cực mô tả sự dịch chuyển của các điện tích và dòng điện ràng buộc quanh vị trí cân bằng. Ở đây sẽ định nghĩa thêm những biến trạng thái đo hiện tượng dòng điện chảy trong vật dẫn điện được hiểu là môi trường trong đó tồn tại các điện tử tự do. Khi có nguồn cung cấp năng lượng điện từ để có thể duy trì một điện trường E → trong vật dẫn, dưới tác dụng của điện Chương 1 - Trang 7 trường này, các điện tích tự do sẽ chuyển động thành dòng và tạo thành dòng điện. Người ta đo trạng thái có dòng chảy trong vật dẫn (trạng thái dẫn điện) bằng một biến trạng thái được gọi là véctơ mật độ dòng điện dẫn → J . Véctơ này có chiều ngược chiều chuyển động của các điện tử tự do (tức cùng chiều dòng điện) và có độ lớn bằng lượng điện tích chảy qua tiết diện ngang (của vật dẫn) bằng 1 m 2 trong khoảng thời gian bằng 1 giây. Trạng thái dẫn điện của vật dẫn, được đo bằng véctơ mật độ dòng điện dẫn J → , rõ ràng tỷ lệ với cường độ điện trường E → : →→ = JE σ (1.16) với σ là điện dẫn suất của vật dẫn. Đây là thông số hành vi của môi trường. Trong hệ đơn vị SI, mật độ dòng điện dẫn J có đơn vị là A/m 2 và điện dẫn suất σ được đo bằng S/m. . thuyết đã tồn tại trước đây như lý thuyết về điện trường tĩnh, lý thuyết về điện động học, lý thuyết về từ trường tĩnh. Lý thuyết tổng hợp này nghiên cứu. môi trường chất mang điện. 1.2. Sơ lược về Lý thuyết Trường điện từ” Lý thuyết Trường điện từ được nhà bác học James Maxwell tổng hợp từ các lý thuyết

Ngày đăng: 25/01/2014, 16:20

HÌNH ẢNH LIÊN QUAN

Hình 1.1. Điện trường do điện tích gây ra tại một điểm - Tài liệu Lý thuyết trường điên tử P1 docx
Hình 1.1. Điện trường do điện tích gây ra tại một điểm (Trang 2)

TỪ KHÓA LIÊN QUAN

w