1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Ôn tập Toán Tích Phân ppt

153 451 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 153
Dung lượng 1,17 MB

Nội dung

Ôn tập Toán Tích Phân Trần Só Tùng Tích phân Trang 1 Nhắc lại Giới hạn – Đạo hàm – Vi phân 1. Các giới hạn đặc biệt: a) ® = x0 sinx lim1 x Hệ quả: ® = x0 x lim1 sinx ® = u(x)0 sinu(x) lim1 u(x) ® = u(x)0 u(x) lim1 sinu(x) b) x x 1 lim1e,xR x ®¥ ỉư +=Ỵ ç÷ èø Hệ quả: 1 x x0 lim(1x)e. ® += x0 ln(1x) lim1 x ® + = x x0 e1 lim1 x ® - = 2. Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả: (c)’ = 0 (c là hằng số) 1 (x)'x aa- =a 1 (u)'uu' aa- =a 2 11 ' xx ỉư =- ç÷ èø 2 1u' ' uu ỉư =- ç÷ èø ( ) 1 x' 2x = ( ) u' u' 2u = xx (e)'e= uu (e)'u'.e= xx (a)'a.lna= uu (a)'a.lna.u'= 1 (lnx)' x = u' (lnu)' u = a 1 (logx') x.lna = a u' (logu)' u.lna = (sinx)’ = cosx (sinu)’ = u’.cosu 2 2 1 (tgx)'1tgx cosx ==+ 2 2 u' (tgu)'(1tgu).u' cosu ==+ 2 2 1 (cotgx)'(1cotgx) sinx - ==-+ 2 2 u' (cotgu)'(1cotgu).u' sinu - ==-+ 3. Vi phân: Cho hàm số y = f(x) xác đònh trên khoảng (a ; b) và có đạo hàm tại x(a;b)Ỵ . Cho số gia Dx tại x sao cho xx(a;b)+DỴ . Ta gọi tích y’.Dx (hoặc f’(x).Dx) là vi phân của hàm số y = f(x) tại x, ký hiệu là dy (hoặc df(x)). dy = y’.Dx (hoặc df(x) = f’(x).Dx Áp dụng đònh nghóa trên vào hàm số y = x, thì dx = (x)’Dx = 1.Dx = Dx Vì vậy ta có: dy = y’dx (hoặc df(x) = f’(x)dx) Tích phân Trần Só Tùng Trang 2 NGUYÊN HÀM VÀ TÍCH PHÂN 1. Đònh nghóa: Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên khoảng (a ; b) nếu mọi x thuộc (a ; b), ta có: F’(x) = f(x). Nếu thay cho khoảng (a ; b) là đoạn [a ; b] thì phải có thêm: F'(a)f(x)vàF'(b)f(b) +- == 2. Đònh lý: Nếu F(x) là một nguyên hàm của hàm số f(x) trên khoảng (a ; b) thì : a/ Với mọi hằng số C, F(x) + C cũng là một nguyên hàm của hàm số f(x) trên khoảng đó. b/ Ngược lại, mọi nguyên hàm của hàm số f(x) trên khoảng (a ; b) đều có thể viết dưới dạng: F(x) + C với C là một hằng số. Người ta ký hiệu họ tất cả các nguyên hàm của hàm số f(x) là f(x)dx. ò Do đó viết: f(x)dxF(x)C =+ ò Bổ đề: Nếu F¢(x) = 0 trên khoảng (a ; b) thì F(x) không đổi trên khoảng đó. 3. Các tính chất của nguyên hàm: · ( ) f(x)dx'f(x) = ò · af(x)dxaf(x)dx(a0) =¹ òò · [ ] f(x)g(x)dxf(x)dxg(x)dx +=+ òòò · [ ] [ ] f(t)dtF(t)Cfu(x)u'(x)dxFu(x)CF(u)C(uu(x) ) =+Þ=+=+= òò 4. Sự tồn tại nguyên hàm: · Đònh lý: Mọi hàm số f(x) liên tục trên đoạn [a ; b] đều có nguyên hàm trên đoạn đó. § Bài 1 : NGUYÊN HÀM Trần Só Tùng Tích phân Trang 3 BẢNG CÁC NGUYÊN HÀM Nguyên hàm của các hàm số sơ cấp thường gặp Nguyên hàm của các hàm số hợp (dưới đây u = u(x)) dxxC =+ ò duuC =+ ò 1 x xdxC(1) 1 a+ a =+a¹- a+ ò 1 u uduC(1) 1 a+ a =+a¹- a+ ò dx lnxC(x0) x =+¹ ò du lnuC(uu(x)0) u =+=¹ ò xx edxeC =+ ò uu edueC =+ ò x x a adxC(0a1) lna =+<¹ ò u u a aduC(0a1) lna =+<¹ ò cosxdxsinxC =+ ò cosudusinuC =+ ò sinxdxcosxC =-+ ò sinuducosuC =-+ ò 2 2 dx (1tgx)dxtgxC cosx =+=+ òò 2 2 du (1tgu)dutguC cosu =+=+ òò 2 2 dx (1cotgx)dxcotgxC sinx =+=-+ òò 2 2 du (1cotgu)ducotguC sinu =+=-+ òò dx xC(x0) 2x =+> ò du uC(u0) 2u =+> ò 1 cos(axb)dxsin(axb)C(a0) a +=++¹ ò 1 sin(axb)dxcos(axb)C(a0) a +=-++¹ ò dx1 lnaxbC axba =++ + ò axbaxb 1 edxeC(a0) a ++ =+¹ ò dx2 axbC(a0) a axb =++¹ + ò Tích phân Trần Só Tùng Trang 4 Vấn đề 1: XÁC ĐỊNH NGUYÊN HÀM BẰNG ĐỊNH NGHĨA Bài toán 1: CMR F(x) là một nguyên hàm của hàm số f(x) trên (a ; b) PHƯƠNG PHÁP CHUNG Ta thực hiện theo các bước sau: + Bước 1: Xác đònh F’(x) trên (a ; b) + Bước 2: Chứng tỏ rằng F'(x)f(x)vớix(a;b) ="Ỵ Chú ý: Nếu thay (a ; b) bằng [a ; b] thì phải thực hiện chi tiết hơn, như sau: + Bước 1: Xác đònh F’(x) trên (a ; b) Xác đònh F’(a + ) Xác đònh F’(b – ) + Bước 2: Chứng tỏ rằng F'(x)f(x),x(a;b) F'(a)f(a) F'(b)f(b) + - ="Ỵ ì ï = í ï = ỵ Ví dụ 1: CMR hàm số: 2 F(x)ln(xxa) =++ với a > 0 là một nguyên hàm của hàm số 2 1 f(x) xa = + trên R. Giải: Ta có: 2 2 2 22 2x 1 (xxa)' 2xa F'(x)[ln(xxa)]' xxaxxa + ++ + =++== ++++ 2 222 xax1 f(x) xa(xxa)xa ++ === ++++ Vậy F(x) với a > 0 là một nguyên hàm của hàm số f(x) trên R. Ví dụ 2: CMR hàm số: x 2 ekhix0 F(x) xx1khix0 ì ³ ï = í ++< ï ỵ Là một nguyên hàm của hàm số x ekhix0 f(x) 2x1khix0 ì ³ = í +< ỵ trên R. Giải: Để tính đạo hàm của hàm số F(x) ta đi xét hai trường hợp: a/ Với x0 ¹ , ta có: x ekhix0 F'(x) 2x1khix0 ì > = í +< ỵ b/ Với x = 0, ta có: Trần Só Tùng Tích phân Trang 5 · Đạo hàm bên trái của hàm số tại điểm x 0 = 0. 20 x0x0 F(x)F(0)xx1e F'(0)limlim1. x0x - ®® -++- === - · Đạo hàm bên phải của hàm số tại điểm x 0 = 0. x0 x0x0 F(x)F(0)ee F'(0)limlim1. x0x ++ + ®® === - Nhận xét rằng F'(0)F'(0)1F'(0)1. -+ ==Þ= Tóm lại: x ekhix0 F'(x)f(x) 2x1khix0 ì ³ == í +< ỵ Vậy F(x) là một nguyên hàm của hàm số f(x) trên R. Bài toán 2: Xác đònh các giá trò của tham số để F(x) là một nguyên hàm của hàm số f(x) trên (a ; b). PHƯƠNG PHÁP CHUNG Ta thực hiện theo các bước sau: + Bước 1: Xác đònh F’(x) trên (a ; b) + Bước 2: Để F(x) là một nguyên hàm của hàm số f(x) trên (a ; b), điều kiện là: F'(x)f(x)vớix(a;b) ="Ỵ Dùng đồng nhất của hàm đa thức Þ giá trò tham số. Chú ý: Nếu thay (a ; b) bằng [a ; b] thì phải thực hiện chi tiết hơn, như sau: + Bước 1: Xác đònh F’(x) trên (a ; b) Xác đònh F’(a + ) Xác đònh F’(b – ) + Bước 2: Để F(x) là một nguyên hàm của hàm số f(x) trên (a ; b), điều kiện là: F'(x)f(x),x(a;b) F'(a)f(a) F'(b)f(b) + - ="Ỵ ì ï = í ï = ỵ Þ giá trò của tham số. Bài toán 3: Tìm hằng số tích phân PHƯƠNG PHÁP CHUNG · Dùng công thức đã học, tìm nguyên hàm: F(x) = G(x) + C · Dựa vào đề bài đã cho để tìm hằng số C. Thay giá trò C vào (*), ta có nguyên hàm cần tìm. Tích phân Trần Só Tùng Trang 6 Ví dụ 3: Xác đònh a , b để hàm số: 2 xkhix1 F(x) axbkhix1 ì £ = í +> ỵ là một nguyên hàm của hàm số: 2xkhix1 f(x) 2khix1 £ ì = í > ỵ trên R. Giải: Để tính đạo hàm của hàm số F(x) ta đi xét hai trường hợp: a/ Với x1 ¹ , ta có: 2xkhix1 F'(x) 2khix1 < ì = í > ỵ b/ Với x = 1, ta có: Để hàm số F(x) có đạo hàm tại điểm x = 1, trước hết F(x) phải liên tục tại x = 1, do đó : x1x1 limF(x)limF(x)f(1)ab1b1a(1) -+ ®® ==Û+=Û=- · Đạo hàm bên trái của hàm số y = F(x) tại điểm x = 1. 2 x1 x1 f(x)F(1)x1 F'(1)=limlim2. x1x1 - ® ® == · Đạo hàm bên phải của hàm số y = f(x) tại điểm x 0 = 0. x1x1x1 F(x)F(1)axb1ax1a1 F'(1)limlimlima. x1x1x1 +++ + ®®® -+-+ ==== Hàm số y = F(x) có đạo hàm tại điểm x = 1 F'(1)F'(1)a2. -+ Û=Û= (2) Thay (2) vào (1), ta được b = –1. Vậy hàm số y = F(x) có đạo hàm tại điểm x = 1, nếu và chỉ nếu a = 2, b = –1. Khi đó: F’(1) = 2 = f(1) Tóm lại với a = 2, b = 1 thì F(x) là một nguyên hàm của hàm số f(x). Ví dụ 4: Xác đònh a , b , c để hàm số: - =++ 22x F(x)(axbxc)e là một nguyên hàm của 22x F(x)(2x8x7)e - = + trên R. Giải: Ta có: 2x22x F'(x)(2axb)e2(axbxc)e =+-++ 22x 2ax2(ab)xb2ce - éù =-+-+- ëû Do đó F(x) là một nguyên hàm của f(x) trên R F'(x)f(x),xR Û="Ỵ Û-+-+-=-+-"Ỵ 22 2ax2(ab)xb2c2x8x7,xR a1a1 ab4b3 b2c7c2 == ìì ïï Û-=Û=- íí ïï -=-= ỵỵ Vậy - =-+ 22x F(x)(x3x2)e . Trần Só Tùng Tích phân Trang 7 BÀI TẬP Bài 1. Tính đạo hàm của hàm số x F(x)lntg 24 p ỉư =+ ç÷ èø Từ đó suy ra nguyên hàm của hàm số 1 f(x) cosx = . Bài 2. Chứng tỏ rằng hàm số 2 ln(x1) ,x0 F(x) x 0,x0 ì + ¹ ï = í ï = ỵ là một nguyên hàm của hàm số 2 22 2ln(x1) ,x0 f(x) x1x 1,x0 ì + -¹ ï = + í ï = ỵ Bài 3. Xác đònh a, b, c sao cho hàm số 2x F(x)(axbxc).e - =++ là một nguyên hàm của hàm số 2x f(x)(2x5x2)e - =-+ trên R. ĐS: a = –2 ; b = 1 ; c = –1. Bài 4. a/ Tính nguyên hàm 32 2 x3x3x7 F(x)củaf(x)vàF(0)8. (x1) ++- == + b/ Tìm nguyên hàm F(x) của 2 x f(x)sinvàF. 224 pp ỉư == ç÷ èø ĐS: a/ 2 x8 F(x)x; 2x1 =++ + b/ 1 F(x)(xsinx1) 2 =-+ Bài 5. a/ Xác đònh các hằng số a, b, c sao cho hàm số: 2 F(x)(axbxc)2x3 =++- là một nguyên hàm của hàm số: 2 20x30x73 f(x)trênkhoảng; 2 2x3 -+ ỉư =+¥ ç÷ èø - b/ Tìm nguyên hàm G(x) của f(x) với G(2) = 0. ĐS: a/ a4;b2;c1; ==-= b/ 2 G(x)(4x2x10)2x322. =-+ Tích phân Trần Só Tùng Trang 8 Vấn đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẢN Ví dụ 1: CMR , nếu f(x)dxF(x)C =+ ò thì 1 f(axb)dxF(axb)Cvớia0. a +=++¹ ò Giải: Ta luôn có: 1 f(axb)dxf(axb)d(axb)vớia0. a +=++¹ Áp dụng tính chất 4, ta được: 11 f(axb)dx(axb)d(axb)F(axb)C(đpcm) aa +=++++ òò . Ghi chú: Công thức trên được áp dụng cho các hàm số hợp: f(t)dtF(t)Cf(u)duF(u)C,vớiuu(x) =+Þ=+= òò Ví dụ 2: Tính các tích phân bất đònh sau: a/ 3 (2x3)dx + ò b/ 4 cosx.sinxdx ò c/ x x 2e dx e1 + ò d/ 2 (2lnx1) dx x + ò Giải: a/ Ta có: 44 33 11(2x3)(2x3) (2x3)dx(2x3)d(2x3).CC. 2248 ++ +=++=+=+ òò b/ Ta có: 5 44 cosx cosx.sinxdxcosxd(cosx)C 5 =-=-+ òò c/ Ta có: xx x xx 2ed(e1) dx22ln(e1)C e1e1 + ==++ ++ òò d/ Ta có: 2 23 (2lnx1)11 dx(2lnx1)d(2lnx1)(2lnx1)C. x22 + =++=++ òò Ví dụ 3: Tính các tích phân bất đònh sau: a/ 2 x 2sindx 2 ò b/ 2 cotgxdx ò c/ tgxdx ò d/ 3 tgx dx cosx ò Giải: a/ Ta có: 2 x 2sindx(1cosx)dxxsinxC 2 =-=-+ òò b/ Ta có: 2 2 1 cotgxdx1dxcotgxxC sinx ỉư =-= + ç÷ èø òò c/ Ta có: sinxd(cosx) tgxdxdxlncosxC cosxcosx ==-=-+ òòò Trần Só Tùng Tích phân Trang 9 d/ Ta có: 3 3443 tgxsinxd(cosx)11 dxdxcosxCC. cosxcosxcosx33cosx - ==-=-+=-+ òòò Ví dụ 4: Tính các tích phân bất đònh sau: a/ 2 x dx 1x+ ò b/ 2 1 dx x3x2 -+ ò Giải: a/ Ta có: 2 2 22 x1d(1x)1 dxln(1x)C 1x21x2 + ==++ ++ òò b/ Ta có: 2 1111 dxdxdx x3x2(x1)(x2)x2x1 ỉư ==- ç÷ -+ èø òòò x2 lnx2lnx1ClnC. x1 - = +=+ - BÀI TẬP Bài 6. Tìm nguyên hàm của các hàm số: a/ 2 x f(x)cos; 2 = b/ 3 f(x)sinx. ĐS: a/ 1 (xsinx)C; 2 ++ b/ 3 1 cosxcosxC. 3 -++ Bài 7. Tính các tích phân bất đònh : a/ xx e(2e)dx; - - ò b/ x x e dx; 2 ò c/ 2xxx x 2.3.5 dx 10 ò . d/ 25x x e1 dx; e - + ò e/ x x e dx e2 + ò ĐS: a/ x 2exC; -+ b/ x x e C; (1ln2)2 + - c/ x 6 C ln6 + d/ 26xx 1 eeC; 6 + e/ x ln(e2)C ++ . Bài 8. Tính các tích phân bất đònh : a/ 44 xx2dx - ++ ò ; b/ 3 5 xxdx ò ; c/ 2 xx1dx + ò ; d/ 2001 (12x)dx; - ò e/ 34lnx dx x - ò ĐS: a/ 3 x1 C; 3x -+ b/ 57 5 xC; 7 + c/ 22 1 (x1)x1C 3 +++ ; d/ 2002 1(12x) .C; 22002 - -+ e/ 1 (34lnx)34lnxC. 6 +++ [...]... 2x Trang 21 xe x + C; 1 + xex b/ ln d/ ln ln(ln x) + C Tích phân Trần Só Tùng Vấn đề 5: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN ò udv = uv - ò vdu Công thức tính tích phân từng phần: Bài toán 1: Sử dụng công thức tích phân từng phần xác đònh I = ò f(x)dx PHƯƠNG PHÁP CHUNG Ta thực hiện theo các bước sau: + Bước 1: Biến đổi tích phân ban đầu về dạng: I = ò f(x)dx = ò f1 (x).f2 (x)dx.. .Tích phân Trần Só Tùng Vấn đề 3: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH Phương pháp phân tích thực chất là việc sử dụng các đồng nhất thức để biến đổi biểu thức dưới dấu tích phân thành tổng các biểu thức mà nguyên hàm của mỗi biểu thức đó có thể nhận được từ bảng nguyên hàm hoặc chỉ bằng các phép biến đổi đơn giản đã biết Chú ý quan trọng: Điểm mấu chốt là phép phân tích là có thể... 2 = 1 1 x2 - 2 ln x 4 - x 2 - 2 + ln 2 + C 4 2 x +1 2 PHƯƠNG PHÁP PHÂN TÍCH Bài toán 2: Xác đònh nguyên hàm các hàm hữu tỉ bằng phương pháp phân tích PHƯƠNG PHÁP CHUNG Cần hiểu rằng thực chất nó là một dạng của phương pháp hệ số bất đònh, nhưng ở đây để P(x) phân tích ta sử dụng các đồng nhất thức quen thuộc Q(x) x2 Dạng 1: Tính tích phân bất đònh: I = ò dx, với a ¹ 0 (ax + b)2 PHƯƠNG PHÁP CHUNG Sử... x.sin(ln x) - ò cos(ln x)dx = x.sin(ln x) - I Trang 22 (2) Trần Só Tùng Tích phân x Thay (2) vào (1), ta được: I = x.cos(ln x) + x.sin(ln x) - I Û I = [cos(ln x) + sin(ln x)] + C 2 Chú ý: Nếu bài toán yêu cầu tính giá trò của một cặp tích phân: I1 = ò sin(ln x)dx và I 2 = ò cos(ln x)dx ta nên lựa chọn cách trình bày sau: · Sử dụng tích phân từng phần cho I1, như sau: 1 ì ì u = sin(ln x) ïdu = cos(ln x)dx... = x - a + -x - b Trần Só Tùng Tích phân Ví dụ 4: Tính tích phân bất đònh: I = ò x 3 (2 - 3x 2 )8 dx Giải: Đặt: t = 2 - 3x 2 Suy ra: dt = 6xdx x3 (2 - 3x2 )8 dx = x2 (2 - 3x2 )8 xdx = Khi đó: I = 2-t 2-t 8 ỉ 1 ư 1 9 t ç - dt ÷ = (t - 2t 8 )dt = 3 3 è 6 ø 18 1 1 ỉ 1 10 2 9 ư 1 10 1 9 9 8 ò (t - 2t )dt = 18 ç 10 t - 9 t ÷ + C = 180 t - 81 t + C 18 è ø Ví dụ 5: Tính tích phân bất đònh: I = ò x 2dx 1-... Tính tích phân bất đònh: I = ò sin 3 x cos xdx Giải: Đặt: t = cos x Þ t 2 = cos x dt = sinxdx, Trang 17 Tích phân Trần Só Tùng sin 3 x cos xdx = sin 2 x cos x sin xdx = (1 - cos2 x) cos x sin x dx = (1 - t 4 ).t.(2tdt) = 2(t 6 - t 2 )dt 1 ư 2 ỉ1 Khi đó: I = 2 ò (t 6 - t 2 )dt = 2 ç t 7 - t 3 ÷ + C = (3t 6 - 7t 2 )t + C 3 ø 21 è7 = 2 (cos3 x - 7 cos x) cos x + C 21 cos x.sin 3 xdx Ví dụ 8: Tính tích phân. .. Ví dụ 12: Tính tích phân bất đònh: I = ò dx x +a 2 , với a ¹ 0 Giải: Đặt: t = x + x + a 2 x ư x2 + a + x dx dt ỉ Suy ra: dt = ç 1 + dx Û = ÷ dx = 2 2 2 t x +a ø x +a x +a è dt Khi đó: I = ò = ln t + C = ln x + x 2 + a + C t dx Ví dụ 13: Tính tích phân bất đònh: I = ò (x + 1)(x + 2) Giải: Ta xét hai trường hợp: ìx + 1 > 0 · Với í Û x > -1 ỵx + 2 > 0 Đặt: t = x + 1 + x + 2 Trang 19 Tích phân · Trần Só... Bài toán 1: Sử dụng phương pháp đổi biến số dạng 1 tích tích phân bất đònh I = ò f(x)dx PHƯƠNG PHÁP CHUNG Ta thực hiện theo các bước: + Bước 1: Chọn x = j(t), trong đó j(t) là hàm số mà ta chọn cho thích hợp + Bước 2: Lấy vi phân dx = j’(t)dt + Bước 3: Biểu thò f(x)dx theo t và dt Giả sử rằng f(x)dx = g(t)dt + Bước 4: Khi đó I = ò g(t)dt Lưu ý: Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ kiểu trên thông... 3: Khi đó: I = uv - ò vdu Ví dụ 1: Tích tích phân bất đònh: I = ò x ln(x + x 2 + 1) x2 + 1 Viết lại I dưới dạng: I = ò ln(x + x 2 + 1) Giải: x x2 + 1 dx 1+ x ì ì u = ln(x + x 2 + 1) ï x2 + 1 = ï ïdu = Đặt : í Þí x x + x2 + 1 dv = ï ï x2 + 1 ỵ ïv = x 2 + 1 ỵ dx x2 + 1 Khi đó: I = x 2 + 1 ln(x + x 2 + 1) - ò dx = x 2 + 1 ln(x + x 2 + 1) - x + C Ví dụ 2: Tích tích phân bất đònh: I = ò cos(ln x)dx Giải:... 1: Tính tích phân bất đònh: I = x = acos2t x = a + (b – a)sin2t ò dx (1 - x 2 ) Giải: Đặt x = sin t; - p p 0 Þ 2 2 Ví dụ 2: Tính tích phân bất . Ôn tập Toán Tích Phân Trần Só Tùng Tích phân Trang 1 Nhắc lại Giới hạn – Đạo hàm – Vi phân 1. Các giới hạn đặc biệt:. 1 (34lnx)34lnxC. 6 +++ Tích phân Trần Só Tùng Trang 10 Vấn đề 3: XÁC ĐỊNH NGUYÊN HÀM BẰNG PHƯƠNG PHÁP PHÂN TÍCH Phương pháp phân tích thực chất là việc

Ngày đăng: 25/01/2014, 10:20

HÌNH ẢNH LIÊN QUAN

2. Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả: - Tài liệu Ôn tập Toán Tích Phân ppt
2. Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả: (Trang 2)
BẢNG CÁC NGUYÊN HÀM Nguyên  hàm  của  các  hàm  số  sơ  cấp  - Tài liệu Ôn tập Toán Tích Phân ppt
guy ên hàm của các hàm số sơ cấp (Trang 4)
Vấn đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẢN  - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 2: XÁC ĐỊNH NGUYÊN HÀM BẰNG VIỆC SỬ DỤNG BẢNG CÁC NGUYÊN HÀM CƠ BẢN (Trang 9)
Đó chỉ là một vài minh hoạ mang tính điển hình. Ví dụ 1:   Tính tích phân bất định: I= ịx(1 x)- 2002 dx. - Tài liệu Ôn tập Toán Tích Phân ppt
ch ỉ là một vài minh hoạ mang tính điển hình. Ví dụ 1: Tính tích phân bất định: I= ịx(1 x)- 2002 dx (Trang 11)
Chú ý: Nếu các em học sinh thấy khó hình dung một cách cặn kẽ cách biến đổi để đưa - Tài liệu Ôn tập Toán Tích Phân ppt
h ú ý: Nếu các em học sinh thấy khó hình dung một cách cặn kẽ cách biến đổi để đưa (Trang 85)
2. Ý nghĩa hình học của tích phân: - Tài liệu Ôn tập Toán Tích Phân ppt
2. Ý nghĩa hình học của tích phân: (Trang 87)
1. Định nghĩa tích phân: - Tài liệu Ôn tập Toán Tích Phân ppt
1. Định nghĩa tích phân: (Trang 87)
Ta có bảng xét dấu: - Tài liệu Ôn tập Toán Tích Phân ppt
a có bảng xét dấu: (Trang 88)
1. Phương pháp sử dụng bảng nguyên hàm cơ bản. 2.  Phương pháp phân tích   - Tài liệu Ôn tập Toán Tích Phân ppt
1. Phương pháp sử dụng bảng nguyên hàm cơ bản. 2. Phương pháp phân tích (Trang 90)
· Giả sử ta có bảng xét dấu: - Tài liệu Ôn tập Toán Tích Phân ppt
i ả sử ta có bảng xét dấu: (Trang 105)
Vấn đề 1: DIỆN TÍCH HÌNH THANG CONG - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 1: DIỆN TÍCH HÌNH THANG CONG (Trang 132)
Vấn đề 2: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI HAI ĐƯỜNG (C1), (C2) - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 2: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI HAI ĐƯỜNG (C1), (C2) (Trang 134)
Vấn đề 3: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI NHIỀU ĐƯỜNG - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 3: DIỆN TÍCH HÌNH PHẲNG GIỚI HẠN BỞI NHIỀU ĐƯỜNG (Trang 136)
Tìm diện tích lớn nhất và nhỏ nhất của hình phẳng S. - Tài liệu Ôn tập Toán Tích Phân ppt
m diện tích lớn nhất và nhỏ nhất của hình phẳng S (Trang 137)
* Gọi S2 là phần diện tích hình tròn còn lại S 2S SOBAC 8 24 3 - Tài liệu Ôn tập Toán Tích Phân ppt
i S2 là phần diện tích hình tròn còn lại S 2S SOBAC 8 24 3 (Trang 139)
* Diện tích hình phẳng S cần tìm: - Tài liệu Ôn tập Toán Tích Phân ppt
i ện tích hình phẳng S cần tìm: (Trang 140)
Bảng xét dấu: - Tài liệu Ôn tập Toán Tích Phân ppt
Bảng x ét dấu: (Trang 141)
Bài 7. Tính diện tích hình phẳng giới hạn bởi các đường: - Tài liệu Ôn tập Toán Tích Phân ppt
i 7. Tính diện tích hình phẳng giới hạn bởi các đường: (Trang 143)
Vấn đề 1: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C) :y f(x); y 0; x a;x b (a b)====&lt;sinh ra khi quay quanh trục Ox được tính bởi công  thức:   - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 1: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (C) :y f(x); y 0; x a;x b (a b)====&lt;sinh ra khi quay quanh trục Ox được tính bởi công thức: (Trang 145)
* Miền hình phẳng (H) sinh ra. ((H) giới hạn bởi 4 đường :x =..., x= ..., y= ..., y= ...) *  (H) quay quanh trục Ox hoặc trục Oy để ta dùng công thức thích hợp - Tài liệu Ôn tập Toán Tích Phân ppt
i ền hình phẳng (H) sinh ra. ((H) giới hạn bởi 4 đường :x =..., x= ..., y= ..., y= ...) * (H) quay quanh trục Ox hoặc trục Oy để ta dùng công thức thích hợp (Trang 145)
Vấn đề 3: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 3: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (Trang 146)
Vấn đề 4: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: - Tài liệu Ôn tập Toán Tích Phân ppt
n đề 4: Thể tích vật tròn xoay do hình phẳng (H) giới hạn bởi 4 đường: (Trang 147)
Ví dụ 2: Gọi (H) là hình phẳng giới hạn bởi trục hoành và parabol (p) :y 2x x= -2. Tính thể tích của khối tròn xoay khi cho (H)  - Tài liệu Ôn tập Toán Tích Phân ppt
d ụ 2: Gọi (H) là hình phẳng giới hạn bởi trục hoành và parabol (p) :y 2x x= -2. Tính thể tích của khối tròn xoay khi cho (H) (Trang 148)
Bài 20. Xét hình (H) giới hạn bởi đường cong y 1; x - Tài liệu Ôn tập Toán Tích Phân ppt
i 20. Xét hình (H) giới hạn bởi đường cong y 1; x (Trang 149)
Bài 19. Tính thể tích khối tròn xoay được tạo thành do quay xung quanh trục oy hình phẳng giới hạn bởi các đường:  - Tài liệu Ôn tập Toán Tích Phân ppt
i 19. Tính thể tích khối tròn xoay được tạo thành do quay xung quanh trục oy hình phẳng giới hạn bởi các đường: (Trang 149)
Bài 7. Xét hình phẳng (H) giới hạn bởi đường cong (C) :y 1; y x - Tài liệu Ôn tập Toán Tích Phân ppt
i 7. Xét hình phẳng (H) giới hạn bởi đường cong (C) :y 1; y x (Trang 152)
Bài 13. Tính diện tích hình phẳng giới hạn bởi đường cong (C) :y 3 x1 x 1 - Tài liệu Ôn tập Toán Tích Phân ppt
i 13. Tính diện tích hình phẳng giới hạn bởi đường cong (C) :y 3 x1 x 1 (Trang 153)

TỪ KHÓA LIÊN QUAN

w