Proakis J (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 4 docx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 4 docx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 4 docx

... =1)=  4 1   1 4  1  3 4  3 = 3 3 4 2 8 p(Y =1)=  4 1   1 2  4 = 4 2 4 p(X =2)=  4 2   1 4  2  3 4  2 = 3 3 2 2 8 p(Y =2)=  4 2   1 2  4 = 6 2 4 p(X =3)=  4 3   1 4  3  3 4  1 = 3 · 4 2 8 p(Y =3)=  4 3   1 2  4 = 4 2 4 p(X ... =3)=  4 3   1 2  4 = 4 2 4 p(X =4) =  4 4   1 4  4  3 4  0 = 1 2 8 p(...

Ngày tải lên: 12/08/2014, 16:21

20 408 1
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 1 docx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 1 docx

... = 1 T  T 4 − T 2 −e j2 π n T t dt + 1 T  T 4 − T 4 4 T te j2 π n T t dt + 1 T  T 2 T 4 e j2 π n T t dt = 4 T 2  jT 2πn te j2 π n T t + T 2 4 2 n 2 e j2 π n T t      T 4 − T 4 − 1 T  jT 2πn e j2 π n T t      − T 4 − T 2 + 1 T  jT 2πn e j2 π n T t      T 2 T 4 = j πn  (−1) n − 2 ... then x n = 1 T  T 2 − T 2 x(t)e j2 π n T t dt = 1 T  T 2 −...

Ngày tải lên: 12/08/2014, 16:21

20 248 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 5 docx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 5 docx

... b5=1.3302 744 29d+00) C- pi =4. *atan(1.) C-INPUT PRINT*, ’Enter -x-’ READ*, x C- t=1./(1.+p*x) a=b1*t + b2*t**2. + b3*t**3. + b4*t* *4. + b5*t**5. q=(exp(-x**2./2.)/sqrt(2.*pi))*a C-OUTPUT PRINT*, q C- STOP END The ... ×10 −3 6.2 14 × 10 −3 3. 1.35 × 10 −3 1.351 × 10 −3 3.5 2.33 ×10 4 2.328 × 10 4 4. 3.17 × 10 −5 3.171 × 10 −5 4. 5 3 .40 ×10 −6 3 .40 4 × 10 −6 5. 2.87 × 10 −7 2.8 74 ×...

Ngày tải lên: 12/08/2014, 16:21

20 369 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 8 docx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 8 docx

... ,y n )= J  j= 1 f X(t 1 ), ,X(t n ) (x 1 , ,x n ) |J( x j 1 , ,x j n )| where J is the number of solutions to the system y 1 = Q(x 1 ),y 2 = Q(x 2 ), ···,y n = Q(x n ) and J( x j 1 , ,x j n ) is the Jacobian ... source. a 1 = −a 15 = − √ 10 · 2 .40 1 = −7.5926 a 2 = −a 14 = − √ 10 · 1. 844 = −5.8312 a 3 = −a 13 = − √ 10 · 1 .43 7 = 4. 544 2 a 4 = −a 12 = − √ 10 · 1.099 =...

Ngày tải lên: 12/08/2014, 16:21

20 293 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 3 pptx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 3 pptx

... f 0 =3. -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0 .4 0.6 0.8 1 0 0.2 0 .4 0.6 0.8 1 1.2 1 .4 1.6 1.8 2 -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0 .4 0.6 0.8 1 0 0.2 0 .4 0.6 0.8 1 1.2 1 .4 1.6 1.8 2 -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0 .4 0.6 0.8 0 0.2 ... +1)e j2 πft df + 1 2j  1 2 0 (−f +1)e j2 πft df = 1 2j  1 j2 πt fe j2 πft + 1 4 2 t 2 e...

Ngày tải lên: 12/08/2014, 16:21

20 270 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 9 pdf

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 9 pdf

... x) 4 3  0 ≤ x ≤ 1 The next figure depicts g(x) for g(1) = 1. Since the resulting distortion is (see Equation 6.6.17) -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0 .4 0.6 0.8 1 -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0 .4 ... 0)=0 Similarly, c 2 =  4 0 sin πt 4 ψ 2 (t)dt = 1 2  4 0 sin πt 4 dt = − 2 π cos πt 4     4 0 = − 2 π (−1 − 1) = 4 π and c 3 =  4...

Ngày tải lên: 12/08/2014, 16:21

20 294 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 10 pot

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 10 pot

... that  A 2 T N 0 =4. 74 =⇒ A 2 T =44 .9352 ×10 −10 If the data rate is 10 Kbps, then the bit interval is T =10 4 and therefore, the signal amplitude is A =  44 .9352 ×10 −10 × 10 4 =6.70 34 ×10 −3 Similarly ... −τ = A 2 T 2  T 0 v 2 cos 2 (2πf c v)dv = A 2 T 2  v 3 6 +  v 2 4 ×2πf c − 1 8 ×(2πf c ) 3  sin (4 f c v)+ v cos (4 f c v) 4( 2πf c ) 2      T 0 = A 2 T 2  T 3 6...

Ngày tải lên: 12/08/2014, 16:21

20 306 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 12 pptx

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 12 pptx

... P 4 = 1 16      244 6 42 64 46 24 644 2      and therefore, P 4 γ = 1 16      244 6 42 64 46 24 644 2           100−1 01−10 0 −110 −1001      = 1 16      40 04 0 44 0 04 40 40 0 4      = ... cases. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 .4 0 .45 -5 -4 -3 -2 -1 0 1 2 3 45 frequency f Sv(f) T=1 0 0.1 0.2 0.3 0 .4 0.5 0.6 0...

Ngày tải lên: 12/08/2014, 16:21

20 422 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 13 pps

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 13 pps

... (e))q 243 2) The following table lists the possible transmitted sequences of length 3 and the corresponding output of the detector. -1 -1 -1 -4 -1 -1 1 -2 -1 1 -1 0 -1 11 2 1-1 -1 -2 1-1 1 0 1 1-1 2 111 ... to d E =2 2 +4 2 +2 2 = 24 ✉ ✉ ✉ ✉✉ ✉ ✉ ✉✉ ✉ ✉ ✉✉ ✉ ✉ ✉     ✒ ✲✲ ❍ ❍ ❍ ❍ ❍❥ ✟ ✟ ✟ ✟ ✟✯ ✲     ✒ ✟ ✟ ✟ ✟ ✟✯ ❅ ❅ ❅ ❅ ❅❘ ❍ ❍ ❍ ❍ ❍❥ ❍ ❍...

Ngày tải lên: 12/08/2014, 16:21

20 330 0
Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 14 pot

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 14 pot

... figure ♥   ❙ ❙♦ ❄ ❅ ❅ ❅ ❅ ❅❘ ✲✲    ✒ ✲ D 2 J D 2 NJ D 3 J DJ DNJ DNJ D 2 NJ X c X b X a  X a  Using the flow graph relations we write X c = D 2 NJX a  + D 2 NJX b X b = DJX d + D 3 JX c X d = DNJX d + DNJX c X a  = D 2 JX b Eliminating ... obtain T (D, N, J) = X a  X a  = D 6 N 2 J 4 + D 7 NJ 3 − D 8 N 2 J 4 1 − DNJ − D 4 N 2 J 3 − D 5 NJ 2 + D 6 N 2 J 3 Thus,...

Ngày tải lên: 12/08/2014, 16:21

20 341 0
w