1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Proakis J. (2002) Communication Systems Engineering - Solutions Manual (299s) Episode 3 pptx

20 270 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 200,97 KB

Nội dung

Thus,  A sin(2πf 0 t + θ)=−A cos(2πf 0 t + θ) Problem 2.53 Taking the Fourier transform of  e j2πf 0 t we obtain F[  e j2πf 0 t ]=−jsgn(f)δ(f − f 0 )=−jsgn(f 0 )δ(f − f 0 ) Thus,  e j2πf 0 t = F −1 [−jsgn(f 0 )δ(f − f 0 )] = −jsgn(f 0 )e j2πf 0 t Problem 2.54 F   d dt x(t)  = F[  x(t) δ  (t)] = −jsgn(f)F[x(t) δ  (t)] = −jsgn(f)j2πfX(f)=2πfsgn(f)X(f) =2π|f|X(f) Problem 2.55 We need to prove that  x  (t)=(ˆx(t))  . F[  x  (t)] = F[  x(t) δ  (t)] = −jsgn(f)F[x(t) δ  (t)] = −jsgn(f)X(f)j2πf = F[ˆx(t)]j2πf = F[(ˆx(t))  ] Taking the inverse Fourier transform of both sides of the previous relation we obtain,  x  (t)=(ˆx(t))  Problem 2.56 x(t) = sinct cos 2πf 0 t =⇒ X(f)= 1 2 Π(f + f 0 )) + 1 2 Π(f − f 0 )) h(t) = sinc 2 t sin 2πf 0 t =⇒ H(f)=− 1 2j Λ(f + f 0 )) + 1 2j Λ(f − f 0 )) The lowpass equivalents are X l (f)=2u(f + f 0 )X(f + f 0 )=Π(f) H l (f)=2u(f + f 0 )H(f + f 0 )= 1 j Λ(f) Y l (f)= 1 2 X l (f)H l (f)=      1 2j (f +1) − 1 2 <f≤ 0 1 2j (−f +1) 0≤ f< 1 2 0 otherwise Taking the inverse Fourier transform of Y l (f) we can find the lowpass equivalent response of the system. Thus, y l (t)=F −1 [Y l (f)] = 1 2j  0 − 1 2 (f +1)e j2πft df + 1 2j  1 2 0 (−f +1)e j2πft df = 1 2j  1 j2πt fe j2πft + 1 4π 2 t 2 e j2πft      0 − 1 2 + 1 2j 1 j2πt e j2πft     0 − 1 2 − 1 2j  1 j2πt fe j2πft + 1 4π 2 t 2 e j2πft      1 2 0 + 1 2j 1 j2πt e j2πft     1 2 0 = j  − 1 4πt sin πt + 1 4π 2 t 2 (cos πt − 1)  38 The output of the system y(t) can now be found from y(t) = Re[y l (t)e j2πf 0 t ]. Thus y(t)=Re  (j[− 1 4πt sin πt + 1 4π 2 t 2 (cos πt − 1)])(cos 2πf 0 t + j sin 2πf 0 t)  =[ 1 4π 2 t 2 (1 − cos πt)+ 1 4πt sin πt] sin 2πf 0 t Problem 2.57 1) The spectrum of the output signal y(t) is the product of X(f) and H(f). Thus, Y (f)=H(f)X(f)=X(f)A(f 0 )e j(θ(f 0 )+(f−f 0 )θ  (f)| f=f 0 ) y(t) is a narrowband signal centered at frequencies f = ±f 0 . To obtain the lowpass equivalent signal we have to shift the spectrum (positive band) of y(t) to the right by f 0 . Hence, Y l (f)=u(f + f 0 )X(f + f 0 )A(f 0 )e j(θ(f 0 )+fθ  (f)| f=f 0 ) = X l (f)A(f 0 )e j(θ(f 0 )+fθ  (f)| f=f 0 ) 2) Taking the inverse Fourier transform of the previous relation, we obtain y l (t)=F −1  X l (f)A(f 0 )e jθ(f 0 ) e jfθ  (f)| f=f 0  = A(f 0 )x l (t + 1 2π θ  (f)| f=f 0 ) With y(t) = Re[y l (t)e j2πf 0 t ] and x l (t)=V x (t)e jΘ x (t) we get y(t) = Re[y l (t)e j2πf 0 t ] =Re  A(f 0 )x l (t + 1 2π θ  (f)| f=f 0 )e jθ(f 0 ) e j2πf 0 t  =Re  A(f 0 )V x (t + 1 2π θ  (f)| f=f 0 )e j2πf 0 t e jΘ x (t+ 1 2π θ  (f)| f=f 0 )  = A(f 0 )V x (t − t g ) cos(2πf 0 t + θ(f 0 )+Θ x (t + 1 2π θ  (f)| f=f 0 )) = A(f 0 )V x (t − t g ) cos(2πf 0 (t + θ(f 0 ) 2πf 0 )+Θ x (t + 1 2π θ  (f)| f=f 0 )) = A(f 0 )V x (t − t g ) cos(2πf 0 (t − t p )+Θ x (t + 1 2π θ  (f)| f=f 0 )) where t g = − 1 2π θ  (f)| f=f 0 ,t p = − 1 2π θ(f 0 ) f 0 = − 1 2π θ(f) f     f=f 0 3) t g can be considered as a time lag of the envelope of the signal, whereas t p is the time corresponding to a phase delay of 1 2π θ(f 0 ) f 0 . Problem 2.58 1) We can write H θ (f) as follows H θ (f)=      cos θ −j sin θf>0 0 f =0 cos θ + j sin θf<0 = cos θ −jsgn(f) sin θ Thus, h θ (t)=F −1 [H θ (f)] = cos θδ(t)+ 1 πt sin θ 39 2) x θ (t)=x(t) h θ (t)=x(t)  (cos θδ(t)+ 1 πt sin θ) = cos θx(t) δ(t) + sin θ 1 πt x(t) = cos θx(t) + sin θˆx(t) 3)  ∞ −∞ |x θ (t)| 2 dt =  ∞ −∞ |cos θx(t) + sin θˆx(t)| 2 dt = cos 2 θ  ∞ −∞ |x(t)| 2 dt + sin 2 θ  ∞ −∞ |ˆx(t)| 2 dt + cos θ sin θ  ∞ −∞ x(t)ˆx ∗ (t)dt + cos θ sin θ  ∞ −∞ x ∗ (t)ˆx(t)dt But  ∞ −∞ |x(t)| 2 dt =  ∞ −∞ |ˆx(t)| 2 dt = E x and  ∞ −∞ x(t)ˆx ∗ (t)dt = 0 since x(t) and ˆx(t) are orthogonal. Thus, E x θ = E x (cos 2 θ + sin 2 θ)=E x Problem 2.59 1) z(t)=x(t)+j ˆx(t)=m(t) cos(2πf 0 t) − ˆm(t) sin(2πf 0 t) +j[m(t)  cos(2πf 0 t) − ˆm(t)  sin(2πf 0 t) = m(t) cos(2πf 0 t) − ˆm(t) sin(2πf 0 t) +jm(t) sin(2πf 0 t)+j ˆm(t) cos(2πf 0 t) =(m(t)+j ˆm(t))e j2πf 0 t The lowpass equivalent signal is given by x l (t)=z(t)e −j2πf 0 t = m(t)+j ˆm(t) 2) The Fourier transform of m(t)isΛ(f). Thus X(f)= Λ(f + f 0 )+Λ(f −f 0 ) 2 − (−jsgn(f)Λ(f))   − 1 2j δ(f + f 0 )+ 1 2j δ(f − f 0 )  = 1 2 Λ(f + f 0 )[1−sgn(f + f 0 )] + 1 2 Λ(f − f 0 ) [1 + sgn(f − f 0 )] . . . . . . . . . . . . . . ❅ ❅ ❅    1 −f 0 − 1 −f 0 f 0 +1f 0 The bandwidth of x(t)isW =1. 40 3) z(t)=x(t)+j ˆx(t)=m(t) cos(2πf 0 t)+ ˆm(t) sin(2πf 0 t) +j[m(t)  cos(2πf 0 t)+ ˆm(t)  sin(2πf 0 t) = m(t) cos(2πf 0 t)+ ˆm(t) sin(2πf 0 t) +jm(t) sin(2πf 0 t) − j ˆm(t) cos(2πf 0 t) =(m(t) − j ˆm(t))e j2πf 0 t The lowpass equivalent signal is given by x l (t)=z(t)e −j2πf 0 t = m(t) − j ˆm(t) The Fourier transform of x(t)is X(f)= Λ(f + f 0 )+Λ(f −f 0 ) 2 − (jsgn(f)Λ(f))   − 1 2j δ(f + f 0 )+ 1 2j δ(f − f 0 )  = 1 2 Λ(f + f 0 ) [1 + sgn(f + f 0 )] + 1 2 Λ(f − f 0 )[1−sgn(f − f 0 )]    . . . . . . . . . . . . . . . . . . ❅ ❅ ❅ 1 −f 0 +1−f 0 f 0 − 1 f 0 41 Chapter 3 Problem 3.1 The modulated signal is u(t)=m(t)c(t)=Am(t) cos(2π4 × 10 3 t) = A  2 cos(2π 200 π t) + 4 sin(2π 250 π t + π 3 )  cos(2π4 × 10 3 t) = A cos(2π(4 × 10 3 + 200 π )t)+A cos(2π(4 × 10 3 − 200 π )t) +2A sin(2π(4 × 10 3 + 250 π )t + π 3 ) − 2A sin(2π(4 × 10 3 − 250 π )t − π 3 ) Taking the Fourier transform of the previous relation, we obtain U(f)=A  δ(f − 200 π )+δ(f + 200 π )+ 2 j e j π 3 δ(f − 250 π ) − 2 j e −j π 3 δ(f + 250 π )   1 2 [δ(f − 4 × 10 3 )+δ(f +4× 10 3 )] = A 2  δ(f − 4 × 10 3 − 200 π )+δ(f − 4 × 10 3 + 200 π ) +2e −j π 6 δ(f − 4 × 10 3 − 250 π )+2e j π 6 δ(f − 4 × 10 3 + 250 π ) +δ(f +4× 10 3 − 200 π )+δ(f +4× 10 3 + 200 π ) +2e −j π 6 δ(f +4× 10 3 − 250 π )+2e j π 6 δ(f +4× 10 3 + 250 π )  The next figure depicts the magnitude and the phase of the spectrum U(f). s s s s ✻ ✻ ✻ ✻ ✻ ✻✻ ✻ |U(f)|  U(f) −f c − 250 π −f c − 200 π −f c + 200 π −f c + 250 π f c − 250 π f c − 200 π f c + 200 π f c + 250 π − π 6 π 6 A/2 A To find the power content of the modulated signal we write u 2 (t)as u 2 (t)=A 2 cos 2 (2π(4 × 10 3 + 200 π )t)+A 2 cos 2 (2π(4 × 10 3 − 200 π )t) +4A 2 sin 2 (2π(4 × 10 3 + 250 π )t + π 3 )+4A 2 sin 2 (2π(4 × 10 3 − 250 π )t − π 3 ) +terms of cosine and sine functions in the first power Hence, P = lim T →∞  T 2 − T 2 u 2 (t)dt = A 2 2 + A 2 2 + 4A 2 2 + 4A 2 2 =5A 2 42 Problem 3.2 u(t)=m(t)c(t)=A(sinc(t) + sinc 2 (t)) cos(2πf c t) Taking the Fourier transform of both sides, we obtain U(f)= A 2 [Π(f)+Λ(f)]  (δ(f − f c )+δ(f + f c )) = A 2 [Π(f − f c )+Λ(f −f c )+Π(f + f c )+Λ(f + f c )] Π(f − f c ) = 0 for |f − f c | < 1 2 , whereas Λ(f − f c ) = 0 for |f − f c | < 1. Hence, the bandwidth of the bandpass filter is 2. Problem 3.3 The following figure shows the modulated signals for A = 1 and f 0 = 10. As it is observed both signals have the same envelope but there is a phase reversal at t = 1 for the second signal Am 2 (t) cos(2πf 0 t) (right plot). This discontinuity is shown clearly in the next figure where we plotted Am 2 (t) cos(2πf 0 t) with f 0 =3. -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Problem 3.4 y(t)=x(t)+ 1 2 x 2 (t) 43 = m(t) + cos(2πf c t)+ 1 2  m 2 (t) + cos 2 (2πf c t)+2m(t) cos(2πf c t)  = m(t) + cos(2πf c t)+ 1 2 m 2 (t)+ 1 4 + 1 4 cos(2π2f c t)+m(t) cos(2πf c t) Taking the Fourier transform of the previous, we obtain Y (f)=M(f)+ 1 2 M(f) M(f)+ 1 2 (M(f − f c )+M(f + f c )) + 1 4 δ(f)+ 1 2 (δ(f − f c )+δ(f + f c )) + 1 8 (δ(f − 2f c )+δ(f +2f c )) The next figure depicts the spectrum Y (f) 1/4 -2fc -fc -2W 2W fc 2fc 1/8 1/2 Problem 3.5 u(t)=m(t) · c(t) = 100(2 cos(2π2000t) + 5 cos(2π3000t)) cos(2πf c t) Thus, U(f)= 100 2  δ(f − 2000) + δ(f + 2000) + 5 2 (δ(f − 3000) + δ(f + 3000))   [δ(f − 50000) + δ(f + 50000)] =50  δ(f − 52000) + δ(f − 48000) + 5 2 δ(f − 53000) + 5 2 δ(f − 47000) +δ(f + 52000) + δ(f + 48000) + 5 2 δ(f + 53000) + 5 2 δ(f + 47000)  A plot of the spectrum of the modulated signal is given in the next figure ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ 125 50 0-53 -52 -48 -47 47 48 52 53 KHz Problem 3.6 The mixed signal y(t) is given by y(t)=u(t) · x L (t)=Am(t) cos(2πf c t) cos(2πf c t + θ) = A 2 m(t) [cos(2π2f c t + θ) + cos(θ)] 44 The lowpass filter will cut-off the frequencies above W , where W is the bandwidth of the message signal m(t). Thus, the output of the lowpass filter is z(t)= A 2 m(t) cos(θ) If the power of m(t)isP M , then the power of the output signal z(t)isP out = P M A 2 4 cos 2 (θ). The power of the modulated signal u(t)=Am(t) cos(2πf c t)isP U = A 2 2 P M . Hence, P out P U = 1 2 cos 2 (θ) A plot of P out P U for 0 ≤ θ ≤ π is given in the next figure. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.5 1 1.5 2 2.5 3 3.5 Theta (rad) Problem 3.7 1) The spectrum of u(t)is U(f)= 20 2 [δ(f − f c )+δ(f + f c )] + 2 4 [δ(f − f c − 1500) + δ(f − f c + 1500) +δ(f + f c − 1500) + δ(f + f c + 1500)] + 10 4 [δ(f − f c − 3000) + δ(f − f c + 3000) +δ(f + f c − 3000) + δ(f + f c + 3000)] The next figure depicts the spectrum of u(t). ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ -1030-1015-1000 -985 -970 970 985 X 100 Hz 1000 10301015 0 5/2 1/2 10 2) The square of the modulated signal is u 2 (t) = 400 cos 2 (2πf c t) + cos 2 (2π(f c − 1500)t) + cos 2 (2π(f c + 1500)t) +25 cos 2 (2π(f c − 3000)t)+25cos 2 (2π(f c + 3000)t) + terms that are multiples of cosines 45 If we integrate u 2 (t) from − T 2 to T 2 , normalize the integral by 1 T and take the limit as T →∞, then all the terms involving cosines tend to zero, whereas the squares of the cosines give a value of 1 2 . Hence, the power content at the frequency f c =10 5 Hz is P f c = 400 2 = 200, the power content at the frequency P f c +1500 is the same as the power content at the frequency P f c −1500 and equal to 1 2 , whereas P f c +3000 = P f c −3000 = 25 2 . 3) u(t) = (20 + 2 cos(2π1500t) + 10 cos(2π3000t)) cos(2πf c t) = 20(1 + 1 10 cos(2π1500t)+ 1 2 cos(2π3000t)) cos(2πf c t) This is the form of a conventional AM signal with message signal m(t)= 1 10 cos(2π1500t)+ 1 2 cos(2π3000t) = cos 2 (2π1500t)+ 1 10 cos(2π1500t) − 1 2 The minimum of g(z)=z 2 + 1 10 z − 1 2 is achieved for z = − 1 20 and it is min(g(z)) = − 201 400 . Since z = − 1 20 is in the range of cos(2π1500t), we conclude that the minimum value of m(t)is− 201 400 . Hence, the modulation index is α = − 201 400 4) u(t) = 20 cos(2πf c t) + cos(2π(f c − 1500)t) + cos(2π(f c − 1500)t) = 5 cos(2π(f c − 3000)t) + 5 cos(2π(f c + 3000)t) The power in the sidebands is P sidebands = 1 2 + 1 2 + 25 2 + 25 2 =26 The total power is P total = P carrier + P sidebands = 200 + 26 = 226. The ratio of the sidebands power to the total power is P sidebands P total = 26 226 Problem 3.8 1) u(t)=m(t)c(t) = 100(cos(2π1000t) + 2 cos(2π2000t)) cos(2πf c t) = 100 cos(2π1000t) cos(2πf c t) + 200 cos(2π2000t) cos(2πf c t) = 100 2 [cos(2π(f c + 1000)t) + cos(2π(f c − 1000)t)] 200 2 [cos(2π(f c + 2000)t) + cos(2π(f c − 2000)t)] Thus, the upper sideband (USB) signal is u u (t) = 50 cos(2π(f c + 1000)t) + 100 cos(2π(f c + 2000)t) 46 2) Taking the Fourier transform of both sides, we obtain U u (f)=25(δ(f − (f c + 1000)) + δ(f +(f c + 1000))) +50 (δ(f − (f c + 2000)) + δ(f +(f c + 2000))) A plot of U u (f) is given in the next figure. ✻ ✻ ✻✻ -1002 -1001 1001 1002 50 25 0 KHz Problem 3.9 If we let x(t)=−Π  t + T p 4 T p 2  +Π  t − T p 4 T p 2  then using the results of Problem 2.23, we obtain v(t)=m(t)s(t)=m(t) ∞  n=−∞ x(t − nT p ) = m(t) 1 T p ∞  n=−∞ X( n T p )e j2π n T p t where X( n T p )=F  −Π  t + T p 4 T p 2  +Π  t − T p 4 T p 2      f= n T p = T p 2 sinc(f T p 2 )  e −j2πf T p 4 − e j2πf T p 4      f= n T p = T p 2 sinc( n 2 )(−2j)sin(n π 2 ) Hence, the Fourier transform of v(t)is V (f)= 1 2 ∞  n=−∞ sinc( n 2 )(−2j)sin(n π 2 )M(f − n T p ) The bandpass filter will cut-off all the frequencies except the ones centered at 1 T p , that is for n = ±1. Thus, the output spectrum is U(f) = sinc( 1 2 )(−j)M(f − 1 T p ) + sinc( 1 2 )jM(f + 1 T p ) = − 2 π jM(f − 1 T p )+ 2 π jM(f + 1 T p ) = 4 π M(f)   1 2j δ(f − 1 T p ) − 1 2j δ(f + 1 T p )  Taking the inverse Fourier transform of the previous expression, we obtain u(t)= 4 π m(t) sin(2π 1 T p t) 47 [...]... cos(2π(fc + 3 × 1 03 )t) + cos(2π(fc − 3 × 1 03 )t) Taking the Fourier transform of the previous expression, we obtain U (f ) = 50 δ(f − (fc + 1 03 )) + δ(f + fc + 1 03 ) + δ(f − (fc − 1 03 )) + δ(f + fc − 1 03 ) + 25 δ(f − (fc + 3 × 1 03 )) + δ(f + fc + 3 × 1 03 ) + δ(f − (fc − 3 × 1 03 )) + δ(f + fc − 3 × 1 03 ) The spectrum of the signal is depicted in the next figure T 50 T T −10 03 T T... +25 δ(f − 8 × 105 − 1 03 ) − δ(f + 8 × 105 + 1 03 ) j j 1 1 −25 δ(f − 8 × 105 + 1 03 ) − δ(f + 8 × 105 − 1 03 ) j j +125 δ(f − 8 × 105 − 2 × 1 03 ) + δ(f + 8 × 105 + 2 × 1 03 ) +125 δ(f − 8 × 105 − 2 × 1 03 ) + δ(f + 8 × 105 + 2 × 1 03 ) = 50[δ(f − 8 × 105 ) + δ(f + 8 × 105 )] +25 δ(f − 8 × 105 − 1 03 )e−j 2 + δ(f + 8 × 105 + 1 03 )ej 2 π π +25 δ(f − 8 × 105 + 1 03 )ej 2 + δ(f + 8 × 105 − 1 03 )e−j 2 π π +125 δ(f... = 1 2 3) The power of the carrier component is Pcarrier = 400 = 200, whereas the power in the sidebands 2 2 is Psidebands = 400α = 50 Hence, 2 1 50 Psidebands = = Pcarrier 200 4 Problem 3. 15 1) The modulated signal is written as u(t) = 100(2 cos(2π1 03 t) + cos(2 3 × 1 03 t)) cos(2πfc t) = 200 cos(2π1 03 t) cos(2πfc t) + 100 cos(2 3 × 1 03 t) cos(2πfc t) = 100 cos(2π(fc + 1 03 )t) + cos(2π(fc − 1 03 )t)... × 105 − 1 03 )e−j 2 π π +125 δ(f − 8 × 105 − 2 × 1 03 ) + δ(f + 8 × 105 + 2 × 1 03 ) +125 δ(f − 8 × 105 − 2 × 1 03 ) + δ(f + 8 × 105 + 2 × 1 03 ) |U (f )| 125 T T fc −2×1 03 50 T T 25 −fc T T T T fc +2×1 03 fc −2×1 03 U (f ) T T fc fc +2×1 03 π r 2 r fc −1 03 fc +1 03 −π r 2 r 2) The... sidebands is Psidebands = 502 502 2502 2502 + + + = 65000 2 2 2 2 3) The message signal can be written as m(t) = sin(2π1 03 t) + 5 cos(2π2 × 1 03 t) = −10 sin(2π1 03 t) + sin(2π1 03 t) + 5 As it is seen the minimum value of m(t) is −6 and is achieved for sin(2π1 03 t) = −1 or t = 3 1 + 1 03 k, with k ∈ Z Hence, the modulation index is α = 6 4×1 03 4) The power delivered to the load is Pload = 1002 (1 + m(t))2... the absolute value of the message signal Problem 3. 13 1) The modulated signal is u(t) = 100[1 + m(t)] cos(2π8 × 105 t) = 100 cos(2π8 × 105 t) + 100 sin(2π1 03 t) cos(2π8 × 105 t) +500 cos(2π2 × 1 03 t) cos(2π8 × 105 t) = 100 cos(2π8 × 105 t) + 50[sin(2π(1 03 + 8 × 105 )t) − sin(2π(8 × 105 − 1 03 )t)] +250[cos(2π(2 × 1 03 + 8 × 105 )t) + cos(2π(8 × 105 − 2 × 1 03 )t)] 49 Taking the Fourier transform of the previous... −997 997 T 999 2) The average power in the frequencies fc + 1000 and fc − 1000 is Pfc +1000 = Pfc −1000 = 1002 = 5000 2 The average power in the frequencies fc + 30 00 and fc − 30 00 is Pfc +30 00 = Pfc 30 00 = 51 502 = 1250 2 1001 10 03 KHz Problem 3. 16 1) The Hilbert transform of cos(2π1000t) is sin(2π1000t), whereas the Hilbert transform ofsin(2π1000t) is − cos(2π1000t) Thus m(t) = sin(2π1000t) − 2 cos(2π1000t)... m(t))2 cos2 (2πfc t) |u(t)|2 = 50 50 50 The maximum absolute value of 1 + m(t) is 6.025 and is achieved for sin(2π1 03 t) = 1 arcsin( 20 ) 2π1 03 + Since 2 × 1 03 k 1 03 1 20 or t = fc the peak power delivered to the load is approximately equal to max(Pload ) = (100 × 6.025)2 = 72.6012 50 Problem 3. 14 1) u(t) = 5 cos(1800πt) + 20 cos(2000πt) + 5 cos(2200πt) 1 = 20(1 + cos(200πt)) cos(2000πt) 2 The modulating... The bandpass filter will cut-off the low-frequency components M (f ) M (f )+ 1 δ(f ) and the terms with the double frequency components 1 (δ(f −2f0 )+δ(f +2f0 )) 2 4 Thus the spectrum Y2 (f ) is given by Y2 (f ) = M (f − f0 ) + M (f + f0 ) and the bandwidth of y2 (t) is W2 = 2W The signal y3 (t) is y3 (t) = 2m(t) cos2 (2πf0 t) = m(t) + m(t) cos(2πf0 t) with spectrum 1 Y3 (t) = M (f ) + (M (f − f0 )... (f + W ) = 4 +M (f − 2fc − W )u−1 (f − 2fc − W ) + M (f + 2fc + W )u−1 (−f − 2fc − W )) The LPF will cut-off the double frequency components, leaving the spectrum Y (f ) = A2 [M (f − W )u−1 (−f + W ) + M (f + W )u−1 (f + W )] 4 The next figure depicts Y (f ) for M (f ) as shown in Fig P-5.12 Y(f) -W W 2) As it is observed from the spectrum Y (f ), the system shifts the positive frequency components to . f 0 =3. -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 0 0.2. +1)e j2 πft df + 1 2j  1 2 0 (−f +1)e j2 πft df = 1 2j  1 j2 πt fe j2 πft + 1 4π 2 t 2 e j2 πft      0 − 1 2 + 1 2j 1 j2 πt e j2 πft     0 − 1 2 − 1 2j  1 j2 πt fe j2 πft + 1 4π 2 t 2 e j2 πft      1 2 0 + 1 2j 1 j2 πt e j2 πft     1 2 0 =. − 2 j e j π 3 δ(f + 250 π )   1 2 [δ(f − 4 × 10 3 )+δ(f +4× 10 3 )] = A 2  δ(f − 4 × 10 3 − 200 π )+δ(f − 4 × 10 3 + 200 π ) +2e j π 6 δ(f − 4 × 10 3 − 250 π )+2e j π 6 δ(f − 4 × 10 3 + 250 π ) +δ(f

Ngày đăng: 12/08/2014, 16:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN