Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 1 pps
... 1) 2 + y 2 ) 2 = −(x − 1) 2 + y 2 ((x − 1) 2 + y 2 ) 2 and 2( x − 1) y ((x − 1) 2 + y 2 ) 2 = 2( x − 1) y ((x − 1) 2 + y 2 ) 2 The Cauchy-Riemann equations are each identities. The first partial derivatives ... 8.4.3 1/ sin (z 2 ) has a second order pole at z = 0 and first order poles at z = (nπ) 1 /2 , n ∈ Z ± . lim z→0 z 2 sin (z 2 ) = lim z→...
Ngày tải lên: 06/08/2014, 01:21
... equal. 516 upper bound for the series. ∞ 1 1 x 2 dx ≤ ∞ n =1 1 n 2 ≤ 1 + ∞ 1 1 x 2 dx 1 ≤ ∞ n =1 1 n 2 ≤ 2 1 2 3 4 1 1 2 3 4 1 Figure 12 . 1: Upper and Lower bounds to ∞ n =1 1/n 2 . In general, ... 0 517 11 .5 Hints Hint 11 .1 Use the argument theorem. Hint 11 .2 Hint 11 .3 To evaluate the integral, consider the circle at infinity. Hint...
Ngày tải lên: 06/08/2014, 01:21
... Annulus. Example 12 . 6 .1 Find the Laurent series expansions of 1/ (1 + z). For |z| < 1, 1 1 + z = 1 + 1 1 z + 1 2 z 2 + 1 3 z 3 + ··· = 1 + ( 1) 1 z + ( 1) 2 z 2 + ( 1) 3 z 3 + ··· = 1 − z ... n) n 11 . ∞ n =2 ( 1) n ln 1 n 12 . ∞ n =2 (n!) 2 (2n)! 13 . ∞ n =2 3 n + 4 n + 5 5 n − 4 n − 3 5 62 Im(z) Re(z) R R 2 1 Im(z)...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 6 Part 1 pps
... < 1 1 4 (1 + t + x) 2 1 < x + t < 0 1 4 (1 − t 2 + 2t (1 − x) + x (2 − x)) x −t < 1, 0 < x + t 1 2 (2t − t 2 − x 2 ) 1 < x − t, x + t < 1 1 4 (1 − t 2 + 2t (1 + x) − x (2 + ... − 1) πx 2L − ∞ m =1 n =1 g mn (2m − 1) π 2L 2 + nπy H 2 2 √ LH sin (2m − 1) πx 2L cos nπy H = ∞ m =1 2 LH sin (2m − 1) πξ...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 2 pptx
... = 1 2 Log x 2 + y 2 + ı Arctan(x, y). 4 52 2. We calculate the first partial derivatives of u and v. u x = 2 e x 2 −y 2 (x cos(2xy) − y sin(2xy)) u y = 2 e x 2 −y 2 (y cos(2xy) + x sin(2xy)) v x = ... an arc and that f 1 (z) = f 2 (z) for all z ∈ D 1 ∩ D 2 . (See Figure 9.4.) Then the function f(z) = f 1 (z) for z ∈ D 1 , f 2 (z) for z ∈ D 2...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 3 ppt
... = 2 0 e ınθ ı e ıθ dθ = e ı(n +1) θ n +1 2 0 for n = 1 [ıθ] 2 0 for n = 1 = 0 for n = 1 2 for n = 1 2. We parameterize the contour and do the integration. z − z 0 = 2 + e ıθ , θ ∈ [0 . . . 2 ) C (z ... 1 |dz| ≤ θ 0 +π θ 0 R 2 e 2 1 R 2 e 2 +1 |R dθ| ≤ R θ 0 +π θ 0 R 2 + 1 R 2 − 1 dθ = πr R 2 + 1 R...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 6 doc
... π) Hint 12 . 23 CONTINUE Hint 12 . 24 CONTINUE Hint 12 . 25 Hint 12 . 26 Hint 12 . 27 Hint 12 . 28 Hint 12 . 29 Hint 12 . 30 CONTINUE 5 81 Solution 12 . 22 cos z = −cos(z − π) = − ∞ n=0 ( 1) n (z −π) 2n (2n)! = ∞ n=0 ( 1) n +1 (z ... convergent, so is the series. Solution 12 . 4 ∞ n =1 ( 1) n +1 n = ∞ n =1 1 2n − 1 − 1 2n = ∞ n =1 1 (2n − 1) (2n) < ∞ n =1...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 7 pdf
... lim →0 + 2 − 1 e ıθ − 1 ıe ıθ dθ = lim →0 + log(e ıθ − 1) 2 − 639 − 1 z − 2 = 1 /2 1 − z /2 = 1 2 ∞ n=0 z 2 n , for |z /2| < 1 = ∞ n=0 z n 2 n +1 , for |z| < 2 − 1 z − 2 = − 1/ z 1 − 2/ z = − 1 z ∞ n=0 2 z n , ... negative direction. 648 (b) 1 z (1 −z) = 1 z + 1 1 − z = 1 z − 1 z 1 1 − 1/ z = 1 z...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 8 pot
... − n 1 k=0 lim z→ e ıπ (1+ 2k)/n log z + (z − e ıπ (1+ 2k)/n )/z nz n 1 = − n 1 k=0 ıπ (1 + 2k)/n n e ıπ (1+ 2k)(n 1) /n = − ıπ n 2 e ıπ(n 1) /n n 1 k=0 (1 + 2k) e 2 k/n = 2 e ıπ/n n 2 n 1 k =1 k e 2 k/n = 2 e ıπ/n n 2 n e 2 /n 1 = π n ... lim z→0 cos z 1 = 1 3. 1 + z 2 z(z 1) 2 There is a first order pole at z = 0 and a sec ond order pole at...
Ngày tải lên: 06/08/2014, 01:21
Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 9 ppt
... c n k =1 (z −z k ). Let m be 696 2. − 1 1 1 x 3 dx = lim →0 + − 1 1 x 3 dx + 1 1 x 3 dx = lim →0 + − 1 2x 2 − 1 + − 1 2x 2 1 = lim →0 + − 1 2( −) 2 + 1 2( 1) 2 − 1 2( 1) 2 + 1 2 2 = ... C. C log 2 z 1 + z 2 dz = − π 3 4 ∞ 0 ln 2 r 1 + r 2 dr + 0 ∞ (ln r + ıπ) 2 1 + r 2 dr = − π 3 4 2 ...
Ngày tải lên: 06/08/2014, 01:21