1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Advanced Mathematical Methods for Scientists and Engineers Episode 6 Part 1 pps

40 272 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 288,39 KB

Nội dung

45.7 Solutions Solution 45.1 The Green function problem is G t − κG xx = δ(x − ξ)δ(t − τ), G(x, t|ξ, τ) = 0 for t < τ, G → 0 as x → ±∞ We take the Fourier transform of the differential equation. ˆ G t + κω 2 ˆ G = F[δ(x − ξ)]δ(t − τ), ˆ G(ω, t|ξ, τ) = 0 for t < τ Now we have an ordinary differential equation Green function problem for ˆ G. The homogeneous solution of the ordinary differential equation is e −κω 2 t The jump condition is ˆ G(ω, 0; ξ, τ + ) = F[δ(x − ξ)]. We write the solution for ˆ G and invert using the convolution theorem. ˆ G = F[δ(x − ξ)] e −κω 2 (t−τ) H(t − τ) ˆ G = F[δ(x − ξ)]F   π κ(t − τ) e −x 2 /(4κ(t−τ))  H(t − τ) G = 1 2π  ∞ −∞ δ(x − y −ξ)  π κ(t − τ) e −y 2 /(4κ(t−τ)) dyH(t − τ) G = 1  4πκ(t − τ) e −(x−ξ) 2 /(4κ(t−τ)) H(t − τ) We write the solution of the diffusion equation using the Green function. u =  ∞ 0  ∞ −∞ G(x, t|ξ, τ)s(ξ, τ) dξ dτ +  ∞ −∞ G(x, t|ξ, 0)f(ξ) dξ u =  t 0 1  4πκ(t − τ)  ∞ −∞ e −(x−ξ) 2 /(4κ(t−τ)) s(ξ, τ) dξ dτ + 1 √ 4πκt  ∞ −∞ e −(x−ξ) 2 /(4κt) f(ξ) dξ 1974 Solution 45.2 1. We apply Fourier transforms in x and y to the Green function problem. G tt − c 2 (G xx + G yy ) = δ(t − τ)δ(x −ξ)δ(y −η) ˆ ˆ G tt + c 2  α 2 + β 2  ˆ ˆ G = δ(t − τ) 1 2π e −ıαξ 1 2π e −ıβη This gives us an ordinary differential equation Green function problem for ˆ ˆ G(α, β, t). We find the causal solution. That is, the solution that satisfies ˆ ˆ G(α, β, t) = 0 for t < τ. ˆ ˆ G = sin   α 2 + β 2 c(t − τ)  c  α 2 + β 2 1 4π 2 e −ı(αξ+βη) H(t − τ) Now we take inverse Fourier transforms in α and β. G =  ∞ −∞  ∞ −∞ e ı(α(x−ξ)+β(y−η)) 4π 2 c  α 2 + β 2 sin   α 2 + β 2 c(t − τ)  dα dβH(t − τ) We make the change of variables α = ρ cos φ, β = ρ sin φ and do the integration in polar coordinates. G = 1 4π 2 c  2π 0  ∞ 0 e ıρ((x−ξ) cos φ+(y−η) sin φ) ρ sin (ρc(t − τ)) ρ dρ dφH(t − τ) 1975 Next we introduce polar coordinates for x and y. x − ξ = r cos θ, y −η = r sin θ G = 1 4π 2 c  ∞ 0  2π 0 e ırρ(cos θ cos φ+sin θ sin φ) dφ sin (ρc(t − τ)) dρH(t − τ) G = 1 4π 2 c  ∞ 0  2π 0 e ırρ cos(φ−θ) dφ sin (ρc(t − τ)) dρH(t − τ) G = 1 2πc  ∞ 0 J 0 (rρ) sin (ρc(t −τ)) dρH(t − τ) G = 1 2πc 1  (c(t − τ)) 2 − r 2 H(c(t − τ) − r)H(t − τ) G(x, t|ξ, τ) = H(c(t − τ) − |x − ξ|) 2πc  (c(t − τ)) 2 − |x − ξ| 2 2. To find the 1D Green function, we consider a line source, δ(x)δ(t). Without loss of generality, we have taken the 1976 source to be at x = 0, t = 0. We use the 2D Green function and integrate over space and time. g tt − c 2 ∆g = δ(x)δ(t) g =  ∞ −∞  ∞ −∞  ∞ −∞ H  c(t − τ) −  (x − ξ) 2 + (y −η) 2  2πc  (c(t − τ)) 2 − (x − ξ) 2 − (y −η) 2 δ(ξ)δ(τ) dξ dη dτ g = 1 2πc  ∞ −∞ H  ct −  x 2 + η 2   (ct) 2 − x 2 − η 2 dη g = 1 2πc  √ (ct) 2 −x 2 − √ (ct) 2 −x 2 1  (ct) 2 − x 2 − η 2 dηH (ct − |x|) g(x, t|0, 0) = 1 2c H (ct − |x|) g(x, t|ξ, τ) = 1 2c H (c(t − τ) − |x − ξ|) Solution 45.3 1. G tt = c 2 G xx , G(x, 0) = 0, G t (x, 0) = δ(x − ξ) ˆ G tt = −c 2 ω 2 ˆ G, ˆ G(ω, 0) = 0, ˆ G t (ω, 0) = F[δ(x − ξ)] ˆ G = F[δ(x − ξ)] 1 cω sin(cωt) ˆ G = π c F[δ(x − ξ)]F[H(ct − |x|)] G(x, t) = π c 1 2π  ∞ −∞ δ(x − ξ −η)H(ct − |η|) dη G(x, t) = 1 2c H(ct − |x − ξ|) 1977 2. We can write the solution of u tt = c 2 u xx , u(x, 0) = 0, u t (x, 0) = f(x) in terms of the Green function we found in the previous part. u =  ∞ −∞ G(x, t|ξ)f(ξ) dξ We consider c = 1 with the initial condition f(x) = (1 − |x|)H(1 − |x|). u(x, t) = 1 2  x+t x−t (1 − |ξ|)H(1 − |ξ|) dξ First we consider the case t < 1/2. We will use fact that the solution is symmetric in x. u(x, t) =                0, x + t < −1 1 2  x+t −1 (1 − |ξ|) dξ, x − t < −1 < x + t 1 2  x+t x−t (1 − |ξ|) dξ, −1 < x − t, x + t < 1 1 2  1 x−t (1 − |ξ|) dξ, x − t < 1 < x + t 0, 1 < x − t u(x, t) =                          0, x + t < −1 1 4 (1 + t + x) 2 x − t < −1 < x + t (1 + x)t −1 < x − t, x + t < 0 1 2 (2t − t 2 − x 2 ) x −t < 0 < x + t (1 − x)t 0 < x −t, x + t < 1 1 4 (1 + t − x) 2 x − t < 1 < x + t 0, 1 < x − t 1978 Next we consider the case 1/2 < t < 1. u(x, t) =                0, x + t < −1 1 2  x+t −1 (1 − |ξ|) dξ, x − t < −1 < x + t 1 2  x+t x−t (1 − |ξ|) dξ, −1 < x − t, x + t < 1 1 2  1 x−t (1 − |ξ|) dξ, x − t < 1 < x + t 0, 1 < x − t u(x, t) =                          0, x + t < −1 1 4 (1 + t + x) 2 −1 < x + t < 0 1 4 (1 − t 2 + 2t(1 − x) + x(2 − x)) x −t < −1, 0 < x + t 1 2 (2t − t 2 − x 2 ) −1 < x − t, x + t < 1 1 4 (1 − t 2 + 2t(1 + x) − x(2 + x)) x − t < 0, 1 < x + t 1 4 (1 + t − x) 2 0 < x − t < 1 0, 1 < x − t 1979 Finally we consider the case 1 < t. u(x, t) =                0, x + t < −1 1 2  x+t −1 (1 − |ξ|) dξ, −1 < x + t < 1 1 2  1 −1 (1 − |ξ|) dξ, x − t < −1, 1 < x + t 1 2  1 x−t (1 − |ξ|) dξ, −1 < x − t < 1 0, 1 < x − t u(x, t) =                          0, x + t < −1 1 4 (1 + t + x) 2 −1 < x + t < 0 1 4 (1 − (t + x − 2)(t + x)) 0 < x + t < 1 1 2 x − t < −1, 1 < x + t 1 4 (1 − (t − x − 2)(t − x)) −1 < x − t < 0 1 4 (1 + t − x) 2 0 < x − t < 1 0, 1 < x − t Figure 45.1 shows the solution at t = 1/2 and t = 2. -2 -1 1 2 0.1 0.2 0.3 0.4 0.5 -4 -2 2 4 0.1 0.2 0.3 0.4 0.5 Figure 45.1: The solution at t = 1/2 and t = 2. Figure 45.2 shows the behavior of the solution in the phase plane. There are lines emanating form x = −1, 0, 1 showing the range of influence of these points. 1980 x u=0 u=0 u=1 Figure 45.2: The behavior of the solution in the phase plane. Solution 45.4 We define L[u] ≡ ∇ 2 u + a(x) · ∇u + h(x)u. We use the Divergence Theorem to derive a generalized Green’s Theorem.  V uL[v] dx =  V u(∇ 2 v + a ·∇v + hv) dx  V uL[v] dx =  V (u∇ 2 v + ∇·(uva) − v∇ · (au) + huv) dx  V uL[v] dx =  V v(∇ 2 u − ∇ · (au) + hu) dx +  ∂V (u∇v −v∇u + uva) · n dA  V (uL[v] − vL ∗ [u]) dx =  ∂V (u∇v −v∇u + uva) · n dA We define the adjoint operator L ∗ . L ∗ [u] = ∇ 2 u − ∇ · (au) + hu 1981 We substitute the solution u and the adjoint Green function G ∗ into the generalized Green’s Theorem.  V (G ∗ L[u] − uL ∗ [G ∗ ]) dx =  ∂V (G ∗ ∇u − u∇G ∗ + vG ∗ a) · n dA  V (G ∗ q −uL ∗ [G ∗ ]) dx = 0 If the adjoint Green function satisfies L ∗ [G ∗ ] = δ(x−ξ) then we can write u as an integral of the adjoint Green function and the inhomegeneity. u(ξ) =  V G ∗ (x|ξ)q(x) dx Thus we see that the adjoint Green function problem is the appropriate one to consider. For L[G] = δ(x − ξ), u(ξ) =  V G(x|ξ)q(x) dx Solution 45.5 1. ∇ 2 u = Cδ(x − ξ + ) − Cδ(x − ξ − ) u = − C 4π|x − ξ + | + C 4π|x − ξ − | 1982 [...]... 1) πx 2L ∞ gmn √ + m =1 n =1 2 sin LH We substitute the series into the Green function differential equation ∆G = δ(x − ξ)δ(y − ψ) 2002 (2m − 1) πx 2L cos nπy H ∞ − gm0 m =1 2 (2m − 1) π 2L ∞ − (2m − 1) πx 2L 2 sin LH 2 (2m − 1) π 2L gmn m =1 n =1 ∞ 2 2 sin LH = m =1 ∞ √ + nπy H + m =1 n =1 (2m − 1) πξ 2L (2m − 1) πx 2L 2 sin LH (2m − 1) πξ 2L 2 sin LH √ 2 sin LH cos nπψ H cos nπy H (2m − 1) πx 2L √ 2 sin LH (2m − 1) πx... − 1) πξ 2L (2n − 1) π 2 cosh (2n 1) πy< 2L cosh − (2n 1) π sinh 2L (2n 1) π(H−y> ) 2L (2n 1) π 2 (2n − 1) πy< 2L cosh (2n − 1) π(H − y> ) 2L sin (2n − 1) πξ 2L This determines the Green function √ 2 2L G(x; xi) = − π ∞ n =1 1 csch 2n − 1 (2n − 1) π 2 cosh cosh (2n − 1) πy< 2L (2n − 1) π(H − y> ) 2L sin (2n − 1) πξ 2L sin 2 We seek a solution of the form ∞ amn (z) √ G(x; xi) = m =1 n =1 mπx nπy 2 sin sin L H LH We... 1 − 2rρ cos φ 1 ln 4π We solve Laplace’s equation with the Green function u(x) = f (ξ) ξ G(x|ξ) · n ds 2π u(r, θ) = f (ϑ)Gρ (r, θ |1, ϑ) dϑ 0 4 1 ρ − r ρ + r(r2 − 1) (ρ2 + 1) cos φ 2π (r2 + ρ2 − 2rρ cos φ)(r2 ρ2 + 1 − 2rρ cos φ) 1 1 − r2 Gρ (r, θ |1, ϑ) = 2π 1 + r2 − 2r cos φ 2π 1 − r2 f (ϑ) u(r, θ) = dϑ 2 − 2r cos(θ − ϑ) 2π 1+ r 0 Gρ = Solution 45.7 1 1 ∂ r2 ∂r r2 ∂G ∂r ∆G = δ(x − ξ)δ(y − η)δ(z − ζ) 1. .. ) 19 95 Solution 45 .12 1 We expand the Green function in eigenfunctions in x ∞ (2n − 1) πx 2L an (y) sin G(x; xi) = n =1 We substitute the expansion into the differential equation ∞ 2 an (y) n =1 ∞ an (y) − n =1 (2n − 1) π 2L 2 an (y) 2 sin L (2n − 1) πx 2L 2 sin L (2n − 1) πx 2L = δ(x − ξ)δ(y − ψ) ∞ 2 sin L = δ(y − ψ) n =1 an (y) − (2n − 1) π 2L 2 an (y) = 2 sin L (2n − 1) πξ 2L (2n − 1) πξ 2L 2 sin L (2n − 1) πx... y = 0 and y = H, we obtain boundary conditions for the an (y) an (0) = an (H) = 0 The solutions that satisfy the left and right boundary conditions are an1 = cosh (2n − 1) πy 2L , an2 = cosh (2n − 1) π(H − y) 2L The Wronskian of these solutions is W =− (2n − 1) π sinh 2L 19 96 (2n − 1) π 2 Thus the solution for an (y) is 2 sin L an (y) = √ 2 2L an (y) = − csch (2n − 1) π cosh (2n − 1) πξ 2L (2n − 1) π 2... solution for G and invert using the convolution theorem 1 ˆ G = F[δ(x − ξ)]H(t − τ ) sin(cω(t − τ )) cω ˆ = H(t − τ )F[δ(x − ξ)]F π H(c(t − τ ) − |x|) G c ∞ π 1 G = H(t − τ ) δ(y − ξ)H(c(t − τ ) − |x − y|) dy c 2π −∞ 1 G = H(t − τ )H(c(t − τ ) − |x − ξ|) 2c 1 G = H(c(t − τ ) − |x − ξ|) 2c 19 94 The Green function for ξ = τ = 0 and c = 1 is plotted in Figure 45.3 on the domain x ∈ ( 1 1), t ∈ (0 1) The 1 Green... ur = c e− ln r = cr 1 u = c1 ln r + c2 There are no solutions that vanishes at infinity Instead we take the solution that vanishes at r = 1 u = c ln r 19 86 Thus we see that G = c ln r We determine the constant by integrating ∆G over a ball about the origin, R ∆G dx = 1 R G · n ds = 1 ∂R Gr ds = 1 ∂R 2π 0 c r dθ = 1 r 2πc = 1 G= 1 ln r 2π 19 87 4 ∞ ∞ ∞ − u= 1 u=− 4π ∞ −∞ −∞ −∞ ∞ ∞ 1 δ(ξ)δ(η) dξ dη dζ... equation 1 1 1 Grr + Gr + 2 Gθθ = δ(r − ρ)δ(θ − ϑ) r r r ∞ − n,m =1 jn,m a 2 gnm √ 2 π a|Jn +1 (jn,m )| ∞ √ = n,m =1 jn,m r a Jn 2 π a|Jn +1 (jn,m )| sin(nθ) jn,m ρ a Jn sin(nϑ) √ 2 π a|Jn +1 (jn,m )| Jn jn,m r a sin(nθ) We equate terms and solve for the coefficients gmn gnm = − a jn,m 2 √ 2 π a|Jn +1 (jn,m )| Jn jn,m ρ a sin(nϑ) This determines the green function 4 The Green function problem is 1 1 1 ∆G ≡... W = s/νx − s/νx ν s/ν e − s/ν e √ √ 1 e s/νx< e− s/νx> u=− ˆ s ν −2 ν √ 1 u = √ e− s/ν|x−ξ| ˆ 2 νs 3 In Exercise 31. 16 , we showed that e−a/t π −2√as e = √ s t We use this result to do the inverse Laplace transform L 1 1 2 e−(x−ξ) /(4νt) u(x, t) = √ 2 πνt 19 93 Solution 45 .11 Gtt − c2 Gxx = δ(x − ξ)δ(t − τ ), G(x, t; ξ, τ ) = 0 for t < τ We take the Fourier transform in x ˆ Gtt + c2 ω 2 G = F[δ(x −... dx = 1 R G · n ds = 1 ∂R Gr ds = 1 ∂R π 2π c 2 r sin(φ) dθdφ = 1 r2 −4πc = 1 1 c=− 4π 1 G=− 4πr − 0 0 19 85 3 We write the Laplacian in circular coordinates ∆G = δ(x − ξ)δ(y − η) 1 ∂ ∂G 1 ∂2G r + 2 2 = δ2 (r) r ∂r ∂r r ∂θ Since the Green function has circular symmetry, Gθ = 0 This reduces the problem to an ordinary differential equation 1 ∂ r ∂r r ∂G ∂r = δ2 (r) We find the homogeneous solutions 1 urr . t < 1 1 4 (1 + t + x) 2 1 < x + t < 0 1 4 (1 − (t + x − 2)(t + x)) 0 < x + t < 1 1 2 x − t < 1, 1 < x + t 1 4 (1 − (t − x − 2)(t − x)) 1 < x − t < 0 1 4 (1 + t −. =                0, x + t < 1 1 2  x+t 1 (1 − |ξ|) dξ, x − t < 1 < x + t 1 2  x+t x−t (1 − |ξ|) dξ, 1 < x − t, x + t < 1 1 2  1 x−t (1 − |ξ|) dξ, x − t < 1 < x + t 0, 1 < x − t u(x,. 1 1 2  x+t 1 (1 − |ξ|) dξ, 1 < x + t < 1 1 2  1 1 (1 − |ξ|) dξ, x − t < 1, 1 < x + t 1 2  1 x−t (1 − |ξ|) dξ, 1 < x − t < 1 0, 1 < x − t u(x, t) =                          0,

Ngày đăng: 06/08/2014, 01:21