HI y+1 2(x2+y2 l)

Một phần của tài liệu Tài liệu ôn thi đại học môn toán sáng tạo và giải phương trình, bất phương trình, hệ phương trình, bất đẳng thức (Trang 149)

(2x + l + 2y + l)^

(Do (2x + l)(2y + l)<-!^ _ ^ = (x + y + l ) ) Mat khac ta cung c6: x + y < v/2(x^ + s u y ra

P > 1 + -

\5777)+l 2( x 2 + y 2- l ) Dat t - /2(x^ + y^) . T u gia thie't ta c6:

( x 2 + y 2 f+ 4 : . 2 x 2 y 2+A = 2 x V + — + — + — > 2 + 6 = 8

\ I xy xy xy xy

2 2 2

xy xy xy > 6 . N h u vay x ^ + y ^ > 2

Khao sat ham so f(t) = 1 + — — vol t > 2 ta t i m duoc

t + 1 t^_2

1

m i n P = — khi x = y = 1

3

17) A p d u n g bat dSng thuc Cosi ta c6: ^- ' i •

a + b + 4c â + b^ + 4ac + 4bc

(a + b)7(a + 2c)(b + 2c) <(a + b)- <2(a2 + b2+c2) Dat t = j f a ^ +b2 +cM + 4 > 2

Suy ra f(t)<- 2 = f(t)

t 2( t 2- 4 )

Khao sat ham so f(t) tren ( 2 ; + o o ) ta c6

.3 , ^,2 t^ ( t 2-4) 2 t^ ( t 2-4) 2

Do 4 t- V 7 t 2- 4 t - 1 6 = 4 ( t ^ - 4 ) + t ( 7 t - 4 ) > 0 V t > 2

• ị i t , . ' I

- / (1)1 M Y I , . '

Lap bang bien thien cua ham so f(t) ta suy ra P < f(t) < - . Dáu bang xay ra

8

khi a = b = c = 2

8)Tac6 . Q - P - l ^ - C ^ ^ ^ - ^ ) , 12(a + c - b ) ^ 25(a + b - c )

Dat b + c - a = 2x a + c - b = 2 y : a + b - c = 2 z a = y + z b = X + z c = X + y T , , J... . . . 4b 3, 4b T u d i e u kien: — > a - c > - b = > a < — + c < b + c = > 0 < 4 x < z < 9 x 5 5 5 24x 24z 50x

Ta CO 49 - P = A = + + . Ta coi day la ham so cua v v o i

x + y z + y z + x ^

f, , 24x 24z 50x ^ 24(z - x)(y2 - zx)

%) = + + y r ^ ; f ' ( y ) = O o y = ±V^

x + y z + y z + x (x + y)2(y + z)2 ' ^

De thay y -> ± o o thi f(y) > 64 . Ta xet tai hai gia trj y = ±>/zx

Tfnh f(-V;;i) = ^ ^ + ^ ; f ( V ; ; ^ ) = 4 8 ^ ^ ^ ^ ^ i m ^ _ 5 0 _ V x - V z z + x Vx+^/z z + x t + 1 t ^ + i

1 1

Khao sat ham so f(t) suy ra f(t) > f v2y ' I ' - 56 => P < - 7 .

Chii y: Ta chi can khao sat ham so f(4xz) v i de thay f(Vxz) < f ( - V x z ) .

19) Ta CO â + + c^ = (a + b + c)^ - 3(a + b)(b + c)(c + a) < 27 - 24abc Suy ra ta c6: Suy ra ta c6:

â + b^+c^ ^IzZff^ + 8 ^ = ^ ^ ^ ^ + 8 ^

Toi day chi con moi mgt bien abc nen ta nghi tai phuong phap ham so de khao sat ham mpt bien. khao sat ham mpt bien.

Dat: t = abc .

Suyra f(t) = ^ / 9 ^ + 8 ^ voi t = abc < ( ^ ^ ! ^ ^ ) ^ = 1 =^ 0 < t < 1 '

Ta c6: f (t) = -8 8 8

^ ^ ( 9- 8 t r

3^(9-8t)2 3 ^ 31

Vi (9 - 8tf - 1 ^ = (9 - 9t)(9 - 7t) = 9(1 -1)(9 - 7t) > 0 =^ f ( t ) > 0 Suyra: f ( t ) < f ( l ) = 9 Suyra: f ( t ) < f ( l ) = 9

Suy ra ta c6 dieu phai chung minh. Dau = xay ra khi a = b = c = 1 Dau = xay ra khi a = b = c = 1

20) Gia thiet viet iai thanh : ^^(^V + +^'^) = 5

(x + y + z)

r . - ! 4x , 4y 4z . , ^ Dat: a = , b = , c = thi ta co: Dat: a = , b = , c = thi ta co:

x + y + z x + y + z x + y + z a + b + c = 4, ab + be + ca = 5 a + b + c = 4, ab + be + ca = 5

Ta phai tirn BGTLN, G T N N ciia bieu thuc: P = 4 1 1 1 P = 4 1 1 1 a b c j 20 ăâ - 4 a + 5) • = f(a) 2 Ta de thay : (b + c)^ > 4bc => {4-af > ^á^ - 4 a + 5 ) = > - < a < 2 Den day khao sat ham so f(a) ta tim dugc GTLn, G T N N <

4z 4x 4y 4x 4y Chii y: Vifc d|it a=-—: , b = -,c =

x + y + z x + y + z x + y + z thuat chuan hoa de chung minh bat dang thuc thuat chuan hoa de chung minh bat dang thuc

thuc chat la ky l A / I l A / I 21) A p dung BDT A M - G M thi ta c6: Do do ta c6: P > • 1 1 - + (1 + b ) ' ( l + c f (b + l)(c + l) (l + b)(l + c ) < l ( 2 + b + c)2 16 (1 + a r (2 + b + c)2 (l + a)(2 + b + c)2

Mat khac tir gia thiet ta c6: b + c = ăb^ + c^) > - a ( b + c)^ => b + c < -

2 a D o d o t a c o : P > — L _ + § — _ + 16 2a^ + l 43^ D o d o t a c o : P > — L _ + § — _ + 16 2a^ + l 43^ .— ^ + - +6â + a + l (a+ 1)3 5a+ 1 = 2 - (1 + a) 5a+ 1 (a+ 1)3 2 + ± a

Xet ham so: f(a) = 2 Va > 0 => f(a) > f (a + l)> (a + l)>

Dau "=" xay ra khi va chi khi:

f-1 .5] .5] 91 108 (a + 1)^ (a+ 1)3 1 a = — 5 b = c = 5 , J , . Kétluan: MinP = _91_ 108 2) Ta CO Vsbc = 2'Jh2c < b + 2c Suy ra Mat khac, 72(a + c)2 +2b^ > (a + c) + b -8 . -8 Suy ra 1 a = — 5 . b = c = 5 • 1 2a + b + x/sbc 2(a + b + c)' 3 + ^ a + c)2+2b2 3 + a + b + c •P> 1 8 2(a + b + c) 3 + a + b + c D$t a + b + c = t, t > 0 . Xethams6 f(t) = -^ t > 0 . 2t 3 + t Taco f ( t ) = - i - + — ^ = ^^^11(^11^, t > 0 Suyra f ( t ) > 0 « t > l . 2t2 (3 + t)2 2t2(3 + t)2

N h i r v a y P>- — .

Dau dang thuc xay ra k h i

23) Gia su 0 < a < b < c < 3 Suy ra a ( a - b ) < 0 a ( a - c ) < 0 a + b + c = l b = 2c b = a + c a ^ - a b + b^ < b ^ ^ - a c + c^ <c^ ( b - c ) ^ - 3 b c a = c = — 4 <=> i D o d o P< b 2 c 2( b ^ - b c + cO = b^c T u 2„2 ^ ^ " ^ ^ ^ ^ t a c o b + c < a + b + c = > b + c < 3 < : > 2 V b ^ < b + c < 3 0 < a < b < c < 3 9 Suy ra 0 < be < - T u do t a c o P< b 2 c 2( 9 - 3 b c ) X e t h a m s o f(t) = - 3 t 3 - 9 t 2 v o i 0 < t < ^ =^ f^(t) =- 9 t 2 + 18t Lap bang bien thien cua h a m so f(t) ta suy ra P < f(2) = 12 Vay G T L N P = 12 k h i a = 0; b = 1; c = 2 va cac hoan v i

a2 ,,2 j,2

24) Theo bat dSng thiic Co si ta c6: — + b > 2a;-— + c > 2 c ; — + a > 2c t u do ta 2 2 2

suy ra — + — + — > a + b + c .CGng theo bat dang thuc Co si ta c6: b c a (2a + 2b + 2 c f 8 . ^ x3 , ^^{^ + ^ + ^f + c)(c + a)<-^ (a + b + c) v a a b c < ^ - ^ ^ . (a + b)(b T u do ta c6: A > 27 2 7 ' 9 (a + b + c f + — ( a + b + c ) - + a + b + c. 27 Dat t = a + b + c suy ra t € ( 0 ; 3 ] . K h i do ta c6: A > t + — = f(t) Xet h a m so f(t) = + t f e n t € (O; 3' t ^ ' - S l

Ta CO f (t) = — < OVt e (O; s ] nen h a m so f(t) nghich bien.

t S u y r a f ( t ) > f ( 3 ) = 4 , Vay m i n A = 4 k h i a = b = c = 1 4 a b — + — b a 25) T u gia thiet ta c6: 2

Theo bat dSng thuc Co si ta c6: (a + b) + 2 l = (a + b) + 2 —+ — 1 ^ a b ^ 1 1 ^ —+ — a b > 2 2(a + b) 1 I a ^ b = 2. 2 b ^ a ^ a ^ b a b + 1 > 2 J 2 f b ^ a ^ fh a] — H + 1 > 2 J 2 + 4 <=> V ^ a ^ b ; . a ^ ' b . Tir do suy ra 2 Dat t = ^ + - > | t h i A = 4 t ^ - 9 t ^ - 1 2 t + 1 8 - f ( t ) . + 4 . > 5 2 ' 5 ' v 2 y 23 Khao sat h a m so f ( t ) f(t) > f

26) T u gia thiet ta suy ra 0 < a < - 5

Ta viet lai A = ăb + d)(c + e) + cd(b + e - a) Theo bat dJing thuc Co si ta c6:

{b + d + c + ef ( i _ a) 2 (b + d)(c + e ) < - ^ (c + d + b + e - a f ( l - 2 a f cd(b + e - a) < -^^ = ^ L- ' ' 27 27 S u y r a A < — ( - S a ' ' - 6 a ^ + 3a + 4 ^ 1 0 8 l /

Khao sat h a m so f(a) = -5â - 6â + 3a + 4 tren 0 < a < - ta c6 5 f ( a ) < f . 5 , 108 ^ ' 1 => A < — 25 25

Dau bang xay ra k h i va chi k h i a = b = c = d = e = — 5

27) Ta thay vetrai la bieu thuc doi xung 3 bien

Ta c6: + b^ + - 3abc = (a + b + c)(â + b^ + - ab - be - ca) (a + b + c)(â + b^ + - ab - be - ca) (a + b + c)(â + b^ + - ab - be - ca) Suy ra: VT = (a + b + c) 2 - (a + b + c f - 2 Dat t = |a + b + c=>0<t<\/6 Ta C O VT = t 2 - t^-2 : - - + 3 t 2 Xet ham so f(t) = - y + 3t,t € {0;S] ^ f (0 = -|t^ + 3,f'(t) = 0 o t = 72

Lap bang bien thien ham só f(t) ta suy ra f(t) <i^\l2^ = l-Jl

28)Kh6ng mat tinh tong quat, ta gia str a > b > c

Dat f(a, b, c) = ab + be + ca -12 (â + b^ + )(âb^ + b^c^ + c^â) Ta se chung minh: f (a,b,c) > f (a,b + c,0). Ta se chung minh: f (a,b,c) > f (a,b + c,0).

Thatvaytaco: f(a,b + c,0) = ăb + c)-12 â+(b + c)^ â(b + c)^ Mat khac ta c6: ab + be + ca > ăb + c) va Mat khac ta c6: ab + be + ca > ăb + c) va

â + b^ + ê < â + (b + c)^a2(b + e)^ > âb^ + b^c^ + c^â nen ta suy ra f(a,b,e)-f(a,b + c,0)>0 nen ta suy ra f(a,b,e)-f(a,b + c,0)>0

Cuol cung ta chung minh: f (a,b + c,0) > 0 <=> 1 > 12ab(â + b^) vol a + b = 1 (a + b f 1 (a + b f 1

Dat t = ab=^0<t<^^ =

4 4

Bat dang thuc can chung minh tra thanh:

12t(l - 3t) < 1 36t2 - 12t +1 > 0 (6t -1)^ > 0 .

Bat d5ng thue nay hien nhien diing.

Dau bang xay ra khi va chi khi a + b = l ^ r r-

Suy ra dau bSng trong bai toan xay ra khi va chi khi (a,b,e) la hoan vj cua bp so 3-N/3 3-73 bp so 3-N/3 3-73

•;0

29). Khong mat tinh tong quat ta gia su: x > y > z 5 5 Khi do — + _ ^ + _ ^ + ,

x "

i y y - z x - z ^xy + yz + zx

Mat khac ta cung c6 bat dang thiic sau: - + - > ^ > nen ta c6:

A = 2 Hay Hay A>10 1 1 - + • ^ x - y y - z z V^y + yz + zx x - z x - z ^xy + yz + zx

^x-z 2Vxy + yz + z x j ^(x-z)^+4(xy + yz + xz) 7('<+z)(x + z + 4y)

20V2

2V2 20N/2

•V(l-y)(l + 3y)

Theo bat dJing thuc Co si thi

2^3 7(1 - y)(l + 3y) = ^ - 2 7 ( 3 " 3y)(l + 3y) < ^ ( 3 - 3y +1 + 3y) = 7(1 - y)(l + 3y) = ^ - 2 7 ( 3 " 3y)(l + 3y) < ^ ( 3 - 3y +1 + 3y) =

Tu do suy ra A > 10\/6

Dau bang xay ra khi va chi khi

' ( 3 - 3 y ) = (l + 3y) r - r-

\' 2 + 76 1 2 - 7 6 . , , . , , x + y + z = l <»x = — - — ; y = - ; z = — va cac hoan vi cua no x + y + z = l <»x = — - — ; y = - ; z = — va cac hoan vi cua no

6 3 6 x - y - y - z x - y - y - z

30) Dat a = x;b = 2y;c = 3z.

Tu dieu kỉn suy ra x, y, z > 0 va xy + yz + zx = 1 Khi do P = Khi do P =

x^+l y 2 + l z^+l Dey rang xy,yz,zx <1

D5ng thuc xy + yz + zx = 1 giup ta nghi den h| thuc luong trong tam giac: Dat X = tanA;y = tan|;z = t a n | . Khi d6 ta c6: Dat X = tanA;y = tan|;z = t a n | . Khi d6 ta c6:

7 A 2 B 2 C P = cos —+ cos^- + cos - P = cos —+ cos^- + cos -

2 2 2 ^ = 2 - sin^ A + sin A . c o s - ^ < 2 - sin^ y + s i n - = 2 - sin^ A + sin A . c o s - ^ < 2 - sin^ y + s i n -

9 4 4

1 . A

— sin —

2 2 j

Dau bang xay ra khi va chi khi

MUC LUC M

• •

Phan 1: Phuong phap giai phuong trinh, bat phuong trinh v6 ty 3

Ị Nhu-ng kien thuc bo trg cho giai phuong trinh v6 ty 3

IỊ Mot so dang phuong trinh v6 ty thuong gap 6 Phan 2: Phuong phap giai h$ phuong trinh I l l Phan 2: Phuong phap giai h$ phuong trinh I l l

Ị doi xung loai 1 I l l IỊ He doi xung loai 2 115 IỊ He doi xung loai 2 115 Phan 3: Phuong phap ham so trong cac bai toan chua tham so 202

Ị Phuong trinh CO tham so 202 IỊ Bat phuong trinh c6 chua tham só 202 IỊ Bat phuong trinh c6 chua tham só 202

Phan 4: Phuong phap ham so trong chung minh bat ding thuc

CONG TY TNHH MOT THANH VIEN DVVH KHANG VIET <

Nha Sach

KHANG VIET

" 9

Diachi:?! OinhTien Hoang- P.OaKao-Quan 1 -Tp. HoChfMinh Dien thoai: (08) 39115694 - 39105797 - 39111969 - 39111968 Dien thoai: (08) 39115694 - 39105797 - 39111969 - 39111968 Fax: (08) 39110880 Email: khangvietbookstore@yahoọcom.vn Website: www.nhasachkhangviet.vn it w ® s e ••[!]••• 0 13 8 9 3 5 0 9 2 5 2 6 4 1 6 GIA: 89.000 DONG

Một phần của tài liệu Tài liệu ôn thi đại học môn toán sáng tạo và giải phương trình, bất phương trình, hệ phương trình, bất đẳng thức (Trang 149)

Tải bản đầy đủ (PDF)

(154 trang)