M D= N E Chứng minh rằng N luôn song song với một mặt phẳng cố định.
Trong mặt phẳng (ABCD), qua M kẻ đường thẳng song song vớ
AB cắt BC tại P, ta có: PB MA NB
PC = MD = NE nên PN // CE Ta có (MNP) // (DCE) (Vì MP // DC và PN // CE)
Mà MN nằm trong (MNP) nên MN song song với (DCE) (cố định)
* Chú ý: Ta có thể sử dụng định lý Ta – lét đảo trong không gia để giải bài này.
III. BÀI TẬP:
1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành
a. Hãy xác định giao tuyến của hai mặt phẳng (SAB) và (SCD) và giao tuyến của hai mặt phẳng (SAC) và (SBD).
b. Một mặt phẳng (α) thay đổi qua BC cắt cạnh SA tại A’ (A’ không trùng với S và A) và cắt cạnh SD tại D’. Tứ giác BCD’A’ là hình gì?
c. Gọi I là giao điểm của BA’ và CD’, J là giao điểm của CA’ và BD’. Với (α) như câu b thì I và J chạy trên các đường nào?
2. Cho tứ diện ABCD có AB = CD. Gọi M, N là hai điểm thay đổi trên hai cạnh AB và CD sao cho BM = CN. Chứng minh rằng MN luôn luôn song song với một mặt phẳng cố định.
3. Cho hình hộp ABCD.A’B’C’D’. GỌi M, N , K lần lượt là trung điểm của các cạnh AA’, AD, DC. Hãy xác định giao điểm của mặt phẳng (MNK) với cạnh CC’, C’B’, B’A’. Từ đó suy ra thiết diện tạo bởi mặt phẳng (MNK) với hình hộp đã cho.
4. Cho hình lập phương ABCD.A1B1C1D1. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, B1C1, DD1.
a. Hãy xác định thiết diện tạo bởi hình lập phương đã cho và mặt phẳng (MNP). b. Chứng minh rằng đường thẳng MN song song với mặt phẳng (BDC1)
5. Cho hình hộp ABCD.A’B’C’D’. Chứng minh các cặp đường thẳng sau đây chéo nhau. a. AA’ và BD b. BD và A’C’. P E Hình 5.9 M N D C B A F
---
CHỦ ĐỀ 6: