Những điểm chọn trong tìm kiếm

Một phần của tài liệu Luận văn thạc sĩ khoa học công nghệ ngành công nghệ thông tin (Trang 36)

(1) Biến nào sẽ được chọn tiếp theo? (2) Giá trị nào sẽ được chọn tiếp theo?

36

Hai lựa chọn đầu đã được xét đến. Sự khác nhau trong không gian tìm kiếm sẽ được khám phá dưới trật tự khác nhau của biến và giá trị. Vì ràng buộc có thể được lan truyền, trật tự khác nhau của biến và giá trị được xem xét có thể ảnh hưởng đến hiệu quả trong thuật toán tìm kiếm. Điều này đặc biệt có ý nghĩa khi tìm kiếm được kết hợp với vấn đề rút gọn bài toán.

Với bài toán chỉ cần tìm một nghiệm, hiệu quả tìm kiếm có thể được cải thiện bằng cách dùng heuristics- nó sẽ chỉ ra những nhánh trong không tìm kiếm có khả năng nhất để tìm tới nghiệm.

Trong một số bài toán, việc kiểm tra một ràng buộc có thỏa mãn hay không chi phí là khá lớn. Trong trường hợp đó, trật tự ràng buộc để kiểm tra có thể ảnh hưởng tới hiệu quả bài toán.

2.1.3 Tìm kiếm Backtrack-free

Trong chương 1, chúng ta đã định nghĩa khái niệm cơ bản của ràng buộc và sự thỏa mãn. Trong phần này, chúng ta sẽ mở rộng chúng.

Định nghĩa 2.6

Một thể hiện ràng buộc trong một tập biến S, chúng ta ký hiệu là

CE(S), là một tập hợp các ràng buộc trong S và tập các biến con của nó.

Định nghĩa 2.7

Một thể hiện ràng buộc trong một tập con các biến S của CSP P, chúng ta ký hiệu là CE(S, P), là một tập hợp tất cả các ràng buộc liên quan trong Ptại S và tập con của các biến.

37

Như vậy không khó khăn khi chúng ta chuyển từ (Z, D, C) thành (Z, D, CE(Z, (Z, D, C))).

Định nghĩa 2.8

Một nhãn kết hợp CL thỏa mãn một thể hiện ràng buộc CE nếu CL thỏa mãn mọi ràng buộc trong CE:

Định nghĩa 2.9

Một tìm kiếm trong CSP là một backtrack-free khi tìm kiếm theo chiều sâu khi trật tự các biến được sắp xếp nếu mỗi biến được gán nhãn, khi đó một biến luôn có thể tìm thấy giá trị phù hợp với tất cả các nhãn.

2.2 Tổng hợp nghiệm

Trong phần này, chúng ta sẽ đưa ra tổng quan về giải pháp tổng hợp nghiệm trong khi giải CSPs. Việc tổng hợp nghiệm giống như thuật toán tìm kiếm, chúng khám phá đồng thời một lúc nhiều nhánh. Nó cũng được xem như việc

38

ràng buộc cho một bài toán với n biến) được tạo ra và rút gọn đến khi một tập

chứa toàn bộ các bộ nghiệm và chỉ bộ nghiệm thôi.

Trong quá trình tìm kiếm một nghiệm thành phần được xem xét tại một thời điểm. Một nhãn kết hợp được mở rộng bằng cách thêm một nhãn tại thời điểm đó cho đến khi một bộ nghiệm được tìm thấy hoặc toàn bộ nhãn kết hợp được xét. Ý tưởng cơ bản của tổng hợp nghiệm là tập hợp tập tất cả các nhãn hợp lệ cho các tập biến lớn hơn, cho đến khi tập toàn bộ các biến được làm. Để đảm bảo tính đúng đắn, thuật toán tổng hợp nghiệm phải đảm bảo chắc chắn rằng toàn bộ nhãn kết hợp không hợp lý sẽ được loại bỏ khỏi tập này. Để đảm bảo tính đầy đủ, thuật toán tổng hợp nghiệm phải đảm bảo chắc chắn rằng không nhãn kết hợp hợp lệ nào bị loại bỏ khỏi tập này. Chúng ta xem Hình 2.4 và đoạn mã.

40

CHƯƠNG 3. THUẬT TOÁN NHẰM RÚT GỌN VÀ TÌM KIẾM LỜI GIẢI CHO BÀI TOÁN

Do khuôn khổ của Luận văn không cho phép nêu hết được những khái niệm và đặc biệt là thuật toán quan trọng. Chương này sẽ nêu ngắn gọn hai kỹ thuật và thuật toán quan trọng nhất cho CSPs: Rút gọn và Tìm kiếm.

Một phần của tài liệu Luận văn thạc sĩ khoa học công nghệ ngành công nghệ thông tin (Trang 36)

Tải bản đầy đủ (PDF)

(120 trang)