Kiến thức: Học sinh hiểu đợc khái niệm nghiệm của đa thức.

Một phần của tài liệu Dai so HKII(Suu Tam-Rat hay) (Trang 43 - 44)

III. Tiến trình lên lớp:

1. Kiến thức: Học sinh hiểu đợc khái niệm nghiệm của đa thức.

2. Kỹ năng: Học sinh biết cách kiểm tra xem một số a có phải là nghiệm của đa thức hay không.

3. Thái độ: Nghiêm túc, cẩn thận trong học tập, tính toán chính xác.

II. Chuẩn bị:

1. Giáo viên: Bảng phụ.

2. Học sinh:

III. Tiến trình lên lớp:

1. Kiểm tra bài cũ - Giới thiệu bài mới: (Hoạt động 1)

Chữa bài 52(Tr 46 - SGK)

Gợi ý học sinh kí hiệu giá trị của P(x) tại x =-1; x = 0; x = 4 P(x) = x2 - 2x - 8

P(-1) = (-1)2 - 2(-1) - 8 = -5 P(0) = 02 - 2.0 - 8 = -8 P(4) = 42 - 2.4 - 8 = 0

2. Bài mới:

Hoạt động của thầy và trò Ghi bảng

Hoạt động 2: Nghiệm của đa thức một biến

Cho đa thức f(x) = x2 - x Tính f(0); f(1)

Chốt: các số 1; 0 khi thay vào đa thức f(x) đều làm cho giá trị của đa thức bằng 0 ta nói mỗi số 0; 1 là một nghiệm của đa thức f(x)

Hoạt động 3: Ví dụ

Cho học sinh kiểm tra lại các ví dụ.

? Muốn kiểm tra một số có là nghiệm của một đa thức cho trớc hay không ta làm nh thế nào?

? Quan sát các ví dụ, có nhận xét gì về số nghiệm của một đa thức?

⇒ Phát biểu chú ý (SGK / 47) Yêu cầu học sinh làm ?1

Học sinh làm ?2

1.Nghiệm của đa thức một biến:

Cho đa thức f(x) = x2 - x Tính f(1); f(0)

F(1) = 12 - 1 = 0 F(0) = 02 - 0 = 0 Ta nói f(x) triệt tiêu tại x = 1; 0 hay mỗi số 1; 0 là một nghiệm của đa thức f(x).

Khái niệm: SGK/47 2.Ví dụ::

a) x = 2 là nghiệm của đa thức p(x) = 3x - 6 vì p(2) = 3.2 - 6 = 0

b) y = 1 và y = -1 là nghiệm của đa thức Q(y) = y2 -1 vì Q(1) = 0 vì Q(-1) = 0

Đa thức (x ) = 2x2 +5 không có nghiệm, vì tại x = a bất kì, ta luôn có B(a) ≥ 0 + 5 > 5 Đa thức (x ) = 2x2 +5 không có nghiệm, vì tại x = a bất kì, ta luôn có B(a) ≥ 0 + 5 > 5

* Chú ý: (SGK/ 47) ?1. x= -2; x = 0 và x = 2 có là nghiệm của đa thức x3 - 4x vì (-2)3 - 4.(-2) = 0; 03 - 4.0 = 0; 23 - 4.2 = 0 ?2. P(x) = 2x + 21 có nghiệm là - 14 Q(x) = x2 - 2x - 3 có nghiệm là: 3

Một phần của tài liệu Dai so HKII(Suu Tam-Rat hay) (Trang 43 - 44)

Tải bản đầy đủ (DOC)

(46 trang)
w