Đối với đánh giá SNRseg đồ thị đi lên theo chiều tăng dần của SNR
Đối với đánh giá LLR, IS và WSS thì đồ thị có hướng đi xuống và variance cũng giảm dần theo chiều tăng dần của SNR chứng tỏ phổ của tín hiệu có SNR cao gần với phổ tín hiệu sạch hơn
Qua kiểm tra thấy được các phương pháp đánh giá trên đều ổn định và đủ tin cậy để thực hiện đánh giá đối với các tín hiệu tiếng nói đã qua xử lý.
1.27.4 Thực hiện đánh giá
Trong quá trình nghiên cứu và triển khai thuật toán ta nhận thấy các thông số sau ảnh hưởng lớn đến thuật toán:
- NoiseMargin :là ngưỡng để nhận biết nhiễu trong VAD .Mặc định của thuật toán Noise margin sẽ là 3db.
- IS :hệ số chỉ thời gian không có tiếng nói đầu tiên trong mỗi file âm thanh được dùng để tính toán nhiễu ban đầu. Do khi kiểm tra những đoạn im lặng
ban đầu trong các file sạch ta nhận thấy rằng đối với từng file thì từ 0.15s đến 0.2s là những đoạn im lặng.Ta lựa giá trị IS là 0.2
- Đối với thuật toán WF thì ta có thêm hệ số alpha là hệ số làm trơn trong phương pháp ước lượng tỉ số Priori SNR.
-Đối với thuật toán SS thì có hệ số Gramma là hệ số quyết định nhiễu sẽ được trừ theo biên độ hay năng lượng. Ta chọn giá trị Gramma là 1 tức là thuật toán Subtraction sẽ trừ nhiễu theo biên độ.
1.27.4.1 Đánh giá thuật toán với các hệ số dự đoán ban đầu
Hệ số IS=0.2, NoiseMargin=3
Đánh giá OE
Sau khi thực hiện thuật toán SS và WF với các thông số alpha=0.9, gamma=1, NoiseMargin=3,IS=0.2 ta có đồ thị của đánh giá bằng SNR, LLR, IS, WSS như sau
Hình 4.11 Đồ thị đánh giá Objective với hệ số IS=0.2, NoiseMargin=3