Hình 3.5 quá trình thực hiện overlap và adding [32]

Một phần của tài liệu đồ án tốt nghiệp xử lý tiếng nói (Trang 45 - 48)

Phương thức ước lượng nhiễu có thể ảnh hưởng lớn đến chất lượng của tín hiệu sau khi được tăng cường. Nếu nhiễu được ước lượng quá nhỏ thì nhiễu sẽ vẫn còn trong tín hiệu và nó sẽ được nghe thấy, còn nếu như nhiễu được ước lượng quá lớn thì tiếng nói sẽ bị méo, và làm sẽ làm tính dễ nghe của tiếng nói bị

ảnh hưởng. Cách đơn giản nhất để ước lượng và cập nhật phổ của nhiễu trong đoạn tín hiệu không có mặt của tiếng nói sử dụng thuật toán thăm dò hoạt động của tiếng nói (voice activity detection - VAD). Tuy nhiên phương pháp đó chỉ thoả mãn đối với nhiễu không thay đổi(nhiễu trắng), nó sẽ không hiệu quả trong các môi trường thực tế (ví dụ như nhà hàng), ở những nơi đó đặc tính phổ của nhiễu thay đổi liên tục. Trong mục này chúng ta sẽ đề cập đến thuật toán ước lượng nhiễu thay đổi liên tục và thực hiện trong lúc tiếng nói hoạt động, thuật toán này sẽ phù hợp môi trường có nhiễu thay đổi cao.

1.20.1 Voice activity detection

Quá trình xử lý để phân biệt khi nào có tiếng nói hoạt động, khi nào không có tiếng nói (im lặng) được gọi là sự thăm dò hoạt động của tiếng nói – Voice activity detection (VAD). Thuật toán VAD có tín hiệu ra ở dạng nhị phân quyết định trên một nền tảng frame-by-frame, khi đó frame có thể xấp xỉ 20-40 ms. Một đoạn tiếng nói có chứa tiếng nói hoạt động thì VAD = 1, còn nếu tiếng nói không hoạt động hay đó chính là nhiễu thì VAD = 0.

Có một vài thuật toán VAD được đưa ra dựa trên nhiều đặc tính của tín hiệu. Các thuật toán VAD được đưa ra sớm nhất thì dựa vào các đặc tính như mức năng lượng, zero-crossing, đặc tính cepstral, phép đo khoảng cách phổ Itakura LPC, phép đo chu kỳ.

Phần lớn các thuật toán VAD đều phải đối mặt với vấn đề là điều kiện SNR thấp, đặc biệt khi nhiễu bị thay đổi. Một thuật toán VAD có độ chính xác trong môi trường thay đổi không thể đủ trong các ứng dụng của Speech enhancement, nhưng việc ước lượng nhiễu một cách chính xác là rất cần thiết tại mọi thời điểm khi tiếng nói hoạt động [26].

1.20.2 Quá trình ước lượng và cập nhật nhiễu

Nhiễu sẽ được ước lượng lúc ban đầu bằng cách lấy trung bình biên độ phổ của tín hiệu bị nhiễu

∑− = = 1 0 ) ( 1 ) ( M i i i Y M D ω ω (3.28)

Sau đó, sử dụng phương pháp VAD để nhận biết các frame tiếp theo, frame nào là frame nhiễu và sẽ cập nhật nhiễu đó cho các frame tiếp theo. Để có thể nhận biết được frame nào là nhiễu thì chúng ta thực hiện so sánh biên độ phổ của nhiễu được ước lượng với biên độ phổ của tín hiệu bị nhiễu :

ω ω ω π π π d D Y T i i ∫ − − = | ) ( ) ( | 2 1 log 20 1 (3.29) Nếu T ≤−12dB thì frame đó không phải là frame có tiếng nói, khi đó ta có thể cập nhật lại nhiễu đã được ước lượng trước đó.

1.21 Kết luận chương

Nội dung của chương giúp nguyên lý chung của thuật toán Spectral – Subtraction và Wiener Filtering. Để hai thuật toán có thể thực hiện được thì cần phải phân tích tín hiệu thành các frame và các frame phải xếp chồng lên nhau, và sau khi các frame được xử lý trong miền tần số và chuyển đổi về lại miền thời gian thì các frame đó phải được liên kết lại với nhau theo đúng phương pháp tương ứng với phương pháp phân tích tín hiệu ở đầu vào, quá trình đó gọi là overlap và adding. Chính điều đó sẽ làm cho tín hiệu của chúng ta sau khi xử lý triệt nhiễu sẽ không bị méo, đảm bảo chất lượng của tiếng nói. Nội dung của chương cũng trình bày vấn đề ước lượng nhiễu, đây là cái chính mà speech enhancement cần giải quyết, nó quyết định tính hiệu quả của thuật toán và chất lượng của tiếng nói sau khi xử lý triệt nhiễu.

CHƯƠNG 4: THỰC HIỆN VÀ ĐÁNH GIÁ CÁC THUẬT TOÁN 1.22 Giới thiệu chương

Dựa vào lý thuyết đã nghiên cứu được, chương này đã xây dựng các lưu đồ thuật toán và thực hiện các thuật toán giảm nhiễu mô phỏng bằng Matlab, sau đó đánh giá các kết quả thu được chủ yếu bằng phương pháp đánh giá Objective Measure

1.23 Quy trình thực hiện và đánh giá thuật toán

Hình 4.1. Sơ đồ thực hiện và đánh giá thuật toán tăng cường

Một phần của tài liệu đồ án tốt nghiệp xử lý tiếng nói (Trang 45 - 48)

Tải bản đầy đủ (DOC)

(78 trang)
w