i li»u tham kh£o

Một phần của tài liệu Phương pháp điểm gần kề quán tính hiệu chỉnh tìm điểm bất động chung cho một họ hữu hạn ánh xạ không giãn (Trang 46 - 49)

T i li»u ti¸ng Vi»t

[1] Ph¤m Ký Anh v  Nguy¹n B÷íng (2005), B i to¡n khæng ch¿nh, NXB ¤i håc Quèc gia H  nëi.

[2] Ho ng Töy (2003) H m thüc v  gi£i t½ch h m, NXB ¤i håc Quèc gia H  nëi.

T i li»u ti¸ng Anh

[3] Y. Alber and I. Ryazantseva (2006), Nonlinear ill-posed problems of monotone type, Springer.

[4] Ya.I. Alber (2007), On the stability of iterative approximations to fixed points of nonexpansive mappings, J. Math. Anal. Appl. 328: pp. 958-971

[5] F. Alvarez and H. Attouch (2001), An inertial proximal method for maximal monotone operators via discretization of a nonolinear os- cillator with damping, Set-Valued Analysis, 9, pp. 3-11.

[6] H.H. Bauschke (1996), The approximation of fixed points of compo- sitions of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 202, n. 1, pp. 150-159.

[7] Ng. Buong (2006), Regularization for unconstrained vector optimiza- tion of convex functionals in Banach spaces, Zh. Vychisl. Mat. i Mat. Fiziki, 46, , n. 3, pp. 372-378.

[8] Ng. Buong (2007), Iterative regularization method of zero order for Lipschitz continuous mapping and strictly pseudocontractive map- pings in Hilbert spaces, International Math. Forum, 2, n. 62, pp. 3053-3061.

[9] F.E. Browder (1967), Nonlinear mapping of nonexpansive and accre- tive type in Banach spaces, Bull. Amer. Math. Soc. 73, pp. 875-882. [10] A.S. Chang, J.Ch. Yao, J.J.Kim, and L. Yang (2007), Iterative ap- proximation to convex feasibility problems in Banach space, Fixed Point Theory and Appl., Article ID 46797 Volume, 19 pages.

[11] C.E.Chidume, S.A.Mutangadura (2001) An example on the Mann iteration method for Lipschitz pseudocontraction, Proc. Amer. Math. Soc. 129, pp. 2359-2363

[12] A.Genel, J.Lindenstrass (1975), An example concerning fixed points, Israel J. Math. 22, pp. 81-86

[13] O. Guler (1991), On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optim, 29, pp. 403-419.

[14] B. Halpern (1967), Fixed points of nonexpanding mapps, Bull. Am.Math. Soc. 73: pp. 957-961

[15] S.Ishikawa (1974), Fixed point by new iteration method, Proc. Amer. Math. Soc. 44, pp. 147-150

[16] P.L. Lions (1977), Approximation de points fixes de contractions, C.R. Acad. Sci. Ser A-B Paris 284: pp. 1357-1359

[17] W.R.Mann (1953), Mean value methods in iteration, Proc. Amer. Math. Soc. 4, pp. 506-510

[18] A. Moudafi (2000), Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl. 241, pp. 45-55.

[19] A Moudafi and E. Elizabeth (2003), An approximate inertial proxi- mal method using the enlargement of a maximal monotone operator, Intern. J. of Pure and Appl. Math., 5, n. 2, pp. 283-299.

[20] A. Moudafi (2004), A Hybrid inertial projection-proximal method for variational inequalities, J. of Inequalities in Pure and Applied Math, 5, n. 3, Article 63.

[21] S. Reich (1980), Strong convergence theorem for resolvants of ac- cretive operators in Banach spaces, J. Math. Anal. Appl. 75: pp. 287-292

[22] R.T. Rockafellar (1976), Monotone operators and proximal point al- gorithm, SIAM Journal on Control and Optim., 14, pp. 877-897. [23] I.P. Ryazanseva (1985), Regularization for equations with accretive

operators by the method of sequential approximations, Sibir. Math. J., 21, N. 1, pp. 223-226 (in Russian).

[24] I.P. Ryazantseva (2002), Regularization proximal algorithm for non- linear equations of monotone type, Zh. Vychisl. Mat. i Mat. Fiziki, 42, N.9 , pp. 1295-1303 (in Russian).

[25] M.V. Solodov and B.F. Svaiter (2000), Forcing strong convergence of proximal point iteration in Hilert space, Math. Programming, 87, pp. 189-202.

[26] Y. Song (2007), A new sufficient condition for strong convergence of Halpern type iterations, Appl. Math. Comput. 198(2,1): pp. 721-728 [27] M.M. Vainberg (1972), Variational method and method of monotone

operators, Moscow, Mir, (in Russian).

[28] R. Wittmann (1992), Approximation of fixed points of nonexpansive mappings, Arch. Math.59: pp. 486-491

[29] H.-K. Xu (2004), Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 289, n. 1, pp. 279-291.

Một phần của tài liệu Phương pháp điểm gần kề quán tính hiệu chỉnh tìm điểm bất động chung cho một họ hữu hạn ánh xạ không giãn (Trang 46 - 49)

Tải bản đầy đủ (PDF)

(49 trang)