Y. Zhu and H. Fan, “Use of biodiesel in non-road mobile machineries for low- carbon construction: Policy review and lifecycle analysis.” Journal of Cleaner Production, vol. 421, p. 138543, Oct. 2023, doi: 10.1016/).jclepro.2023.138543.
A. Jain et al., “Energy, exergy and emission [3E] analysis of Mesua Ferrea seed oil biodiesel fucled diesel engine at variable injection timings,” Fuel, vol. 353, p. 129115, Dec. 2023, doi: 10.1016/j.fucl.2023.129115.
Son N. T., Thuý D. T. D., and Ngo D. T., “Nghién cứu tông hợp biodiesel từ đầu
ăn phê thai trên xúc tac dj thé MgSiOs.,” Vietnam Journal of Chemistry, vol. 48, no. 6, Art. no, 6, 2010, doi: 10.15625/2249,
M. A. G, Nasim, O. Khan, M. Parvez, and B. K. Bhatt, “Optimizing ultrasonic reactor operating variables using intelligent soft computing models for increased biodiesel production,” Green Technologies and Sustainability, vol. 1, no. 3, p.
100033, Sep. 2023, doi: 10.1016/j.grets.2023. 100033.
H. Zhang, F. Tian, L. Xu, R. Peng, Y. Li, and J. Deng, “Batch and continuous esterification for the direct synthesis of high qualified biodiesel from waste cooking oils (WCO) with Amberlyst-15/Poly (vinyl alcohol) membrane as a bifunctional catalyst,” Chemical Engineering Journal, vol. 388, p. 124214, May
2020, doi: 10.1016/j.cej.2020.124214.
M. A. Rageeb, “Biodiesel production from waste cooking oil,” 2015.
H. R. Mahmoud, S. A. El-Molla, and M. M. Ibrahim, “Biodiesel production via stearic acid esterification over mesoporous ZrO2/SiO2 catalysts synthesized by surfactant-assisted sol-gel auto-combustion route,” Renewable Energy, vol. 160, pp. 42-51, Nov. 2020, doi: 10,1016/j.renene.2020.06.005.
M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, and E.
Santacesaria, “Transesterification of Soybean Oil to Biodiesel by Using Heterogeneous Basic Catalysts,” Jad. Eng. Chem. Res., vol. 45, no. 9, pp. 3009—
3014, Apr. 2006, doi: 10,102 1/ie0514020,
W. Parawira, “Biodiesel production from Jatropha curcas: A review,” Scientific Research and Essays, vol. 5, pp. 1796-1808, Aug. 2010,
[10] Ho M. H., Tran L. N. H., Tran T. T. T., Nguyen T. V. A., and Trinh T. P. L.,
“Nghiên cứu chiết dau và thu nhận đường từ bã cà phê," The Journal of
Agriculture and Development, vol. 21, no. 1, Art. no. 1, Feb, 2022, doi:
10.52997/jad.4.01.2022.
[11] Em P. C., Hiền Ô. T. M., Vị L. T. T., Khoi M. T., and Dat N. V., “Tối ưu hóa quy trình tông hợp biodiesel từ dầu hạt cao su bằng phương pháp bề mặt đáp img,”
Tạp chí Khoa học Đại học cân Thơ, no. 34, Art. no. 34, Nov. 2014.
[12] *Điều chế Biodiesel từ mỡ cá tra với xúc tác KOH/y-AlOs sử dụng sự khuấy
trộn của sóng siêu 4m,” Technology Development, vol. 13, 2010.
39
[13] Huê B. T. B., “Nghiên cứu tông hợp biodiesel từ mỡ cá basa,” Tap chí Khoa học
Dai học cần Thơ, no. 10, Art. no. 10, May 2008.
[14] Giang P. T. T., “Nghiên cứu tong hợp hệ xúc tác hiệu quả cho quá trình sản xuất
nhiên liệu sinh học từ rơm rạ”.
[15] Mai T.T. N., Đức N. M., and Trung N. B., "Nghiên cứu chế tạo hệ xúc tác axit rắn La,Zn/y-AlaO› dé điều chế biodiesel từ mỡ bò đã qua sử dụng có chỉ số axit
tự do cao”.
[16] K. Colombo, L. Ender, M. M. Santos, and A. A. Chivanga Barros, “Production of biodiesel from Soybean Oil and Methanol, catalyzed by calcium oxide in a recycle reactor,” South African Journal of Chemical Engineering, vol. 28, pp.
19-25, Apr. 2019, doi: 10.1016/j.sajce.2019.02.001.
[17] A. A. C. Barros, E. Wust, and H. F. Meier, “Estudo da viabilidade técnico- cientifica da produgao de biodiesel a partir de residuos gordurosos,” Eng. Sanit.
Ambient... vol. 13, pp. 255-262, Sep. 2008, doi: 10.1590/S1413- 41522008000300003.
[18] S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, “Review of biodiesel composition, properties, and specifications,” Renewable and Sustainable Energy Reviews, vol. 16, no. |, pp. 143-169, lan. 2012, doi:
10.1016/j.rser.2011.07.143.
[19] E. L. Almeida, C. M. G. Andrade, and O. A. dos Santos, “Production of Biodiesel Reactor Engineering, vol. 16, no. 5, May 2018, doi: 10.1515/ijere-2017-0130.
[20] A. M. Shakorfow and A. H. Mohamed, “Homogenous Acidic and Basic Catalysts in Biodiesel Synthesis: A Review,” Acta Chemica Malaysia, vol. 4, no.
2, pp. 76-85, Dec. 2020, doi: 10.2478/acmy-2020-0013.
[21] O. D. Okechukwu, E. Joseph, U. C. Nonso, and N.-O. Kenechi, “Improving heterogeneous catalysis for biodiesel production process,” Cleaner Chemical Engineering, vol. 3, p. 100038, Sep. 2022, doi: 10.1016/j.clce.2022.100038.
[22] S. Semwal, A. K. Arora, R. P. Badoni, and D. K. Tuli, “Biodiesel production using heterogeneous catalysts,” Bioresource Technology, vol. 102, no. 3, pp.
2151-2161, Feb. 2011, doi: 10.1016/].biortech.2010.10.080.
[23] S. Omar, Y. Yang, and J. Wang, “A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids,” Front. Chem. Sci. Eng., vol. 1S, no. 1, pp. 4—
17, Feb. 2021, doi: 10.1007/s11705-020-1933-x.
[24] R. A. Pratika, K. Wijaya, and W. Trisunaryanti, “Hydrothermal treatment of SO,/TiO2 and TiO2/CaO as heterogeneous catalysts for the conversion of Jatropha oil into biodiesel,” Journal of Environmental Chemical Engineering,
vol. 9, no. 6, p. 106547, Dec. 2021, doi: 10.1016/j.jece.2021.106547.
[25] M. Sakti La Ore et al., “The synthesis of SO4/ZrOz and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade
40
coconut oil into biodiesel,” Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104205, Oct. 2020, doi: 10.1016/j.jece.2020.104205.
[26] N. S. Lani, N. Ngadi, I. Mohammed Inuwa, L. Anako Opotu, Z. Y. Zakaria, and S. Haron, “A cleaner approach with magnetically assisted reactor setup over CaO-zeolite/Fe;Os catalyst in biodiesel production: Evaluation of catalytic
performance, reusability and life cycle assessment studies,” Journal of Cleaner Production, vol. 419, p. 138329, Sep. 2023, doi: 10.1016/j.jclepro.2023. 138329, [27] R. Amal, R. Nadeem, A. Intisar, H. Rouf, D. Hussain, and R. Kousar, “An insight
into the catalytic properties and process optimization of Fe, Ni doped eggshell derived CaO for a green biodiesel synthesis from waste chicken fat,” Catalysis
Communications, vol. 187, p. 106848, Feb. 2024, doi:
10.1016/j.catcom.2024. 106848.
[28] F. Hussain ef al., “Waste Animal Bones as Catalysts for Biodiesel Production; A Mini Review,” Catalysts, vol. 11, no. 5, Art. no. 5, May 2021, dot:
10.3390/catal 11050630.
[29] S. F. Basumatary ef ai, “Advances in CaO-bascd catalysts for sustainable biodiesel synthesis,” Green Energy and Resources, vol. 1, no. 3, p. 100032, Sep.
2023, doi: 10.1016/j.gerr.2023.100032.
[30] F. A. Aisien, K. O. Uwadiae, and E. T. Aisien, “Process optimization for blended waste frying oil in biodiesel production using CaO derived from African periwinkle shell catalyst through response surface methodology,” Sustainable
Chemistry for the Environment, vol. 4, p. 100042, Dec. 2023, doi:
10.1016/j.scenv.2023,100042.
[31] S. Sahu, K. Saikia, B. Gurunathan, A. Dhakshinamoorthy, and S. L. Rokhum,
“Green synthesis of CaO nanocatalyst using watermelon peels for biodiesel
production,” Molecular Catalysis, vol. 547, p. 113342, Aug. 2023, doi:
10.1016/j.meat.2023.113342.
[32] M. A. Hernández-Martinez, J. A. Rodriguez, G. Chavez-Esquivel, D. Ángeles-
Beltran, and J. A. Tavizón-Pozos, “Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues,” Next Materials, vol. 1, no. 4, p. 100033, Dec. 2023, doi: 10.1016/j.nxmate.2023.100033.
[33] S. Hu, Y. Wang, and H. Han, “Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production,” Biomass and Bioenergy, vol. 35, no.
8, pp. 3627-3635, Aug. 2011, doi: 10.1016/j.biombioe.2011.05.009.
[34] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, and J. Hidaka,
“Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production,” Fuel, vol. 87, no. 12, pp. 2798-2806, Sep. 2008, doi: 10.1016/.fuel.2007. 10.019.
4I
[35] D. Murguia-Ortiz et al., “Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production,” Materials Letters, vol. 291, p. 129587, May 2021, doi: 10.1016//.matlet.2021.129587.
[36] M. Ahmed ef a/., “Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies,”
Energy Conversion and Management, vol. 280, p. 116821, Mar. 2023, doi:
10.1016/j.enconman.2023.116821.
[37] J. Hwang, C. Bae, and T. Gupta, “Application of waste cooking oil (WCO) biodiesel in a compression ignition engine,” Fuel, vol. 176, pp. 20-31, Jul. 2016, doi: 10.1016/j.fuel.2016.02.058.
[38] S. Mishra, A. Chauhan, and K. B. Mishra, “Role of binary and ternary blends of WCO biodiesel on emission reduction in diesel engine,” Fuel, vol. 262, p.
116604, Feb. 2020, doi: 10.1016/j.fuel.2019.116604.
[39] A. M. A. Attia and A. E. Hassaneen, “Influence of diesel fuel blended with biodiesel produced from waste cooking oil on diesel engine performance,” Fuel,
vol. 167, pp. 316-328, Mar. 2016, doi: 10.1016/j.fuel.2015.11.064.
[40] N. Shahirah Ahmad Zamanhuri, M. Farhan Hanafi, and N. Sapawe,
“Characterization and physicochemical properties of biodiesel produced from waste cooking oil (WCO) using magnetic alumina-ferric oxide nanoparticles catalyst,” Materials Today: Proceedings, vol. 31, pp. A122-A125, Jan. 2020, doi:
10.1016/j.matpr.2021.01.035.
[41] I. Ghasemi, M. Haghighi, E. Bekhradinassab, and A. Ebrahimi, “Ultrasound-
assisted dispersion of bifunctional CaO-ZrO› nanocatalyst over acidified kaolin for production of biodiesel from waste cooking oil,” Renewable Energy, vol. 225, p. 120287, May 2024, doi: 10,1016/j.renene.2024.120287.
[42] et al Wang, “Heterogeneous ZnO-containing catalysts for efficient biodiesel
production,” RSC Advances, vol. 11, no. 33, pp. 20465-20478, Jun. 2021, doi:
10.1039/d1ra03158a.
[43] T. Qu, S. Niu, X. Zhang, K. Han, and C. Lu, “Preparation of calcium modified Zn-Ce/AhO; heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology,” Fuel, vol. 284, p. 118986, Jan. 2021, doi:
10.1016/j.fuel.2020.118986.
[44] I. Lukié et ai, “Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO-ZnO,” Fuel, vol. 113, pp. 367-378, Nov. 2013, doi:
10.1016/j.fuel.2013.05.093.
[45] I. Lukié, Z. Kesi¢, S. Maksimovié, M. Zdujié, J. Krstié, and D. Skala, “Kinetics
of heterogencous methanolysis of sunflower oil with CaO-ZnO catalyst:
Influence of different hydrodynamic conditions,” Chemical Industry and Chemical Engineering Quarterly, vol. 20, no. 3, pp. 425-439, 2014.
42
[46] B. Gurunathan and A. Ravi, “Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst,” Bioresource
Technology, vol. 188, pp. 124-127, Jul. 2015, doi:
10.1016//.biortech.2015.01.012.
[47] M. Farooq, A. Ramli, and A. Naeem, “Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones,”
Renewable Energy, vol. 76, pp. 362-368, Apr 2015, - doi:
10.1016/j.renene.2014.11.042.
[48] H. V. Lee and Y. H. Taufiq-Yap, “Optimization study of binary metal oxides catalyzed transesterification system for biodiesel production,” Process Safety and Environmental Protection, vol. 94, pp. 430-440, Mar. 2015, doi:
10.1016/j.psep.2014.10.001.
[49] G. Baskar, A. Gurugulladevi, T. Nishanthini, R. Aiswarya, and K. Tamilarasan,
“Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst,” Renewable Energy, vol. 103, pp.
641-646, Apr. 2017, doi: 10.1016/j.renene.2016.10.077.
[50] A. H. Al-Muhtaseb e/ al/., “Facile technique towards clean fuel production by upgrading waste cooking oil in the presence of a heterogeneous catalyst,”
Journal of King Saud University - Science, vol. 32, no. 8, pp. 3410-3416, Dec.
2020, doi: 10.1016/j.jksus.2020.10.001,
[51] M. Arrais Gongalves, E. Karine Lourengo Mares, J. Roberto Zamian, G. Narciso da Rocha Filho, and L. Rafael Vieira da Conceicão, “Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous
catalyst MoO3;/SrFe204,” Fuel, vol. 304, p. 121463, Nov. 2021, doi:
10.1016/j.fuel.202 1.121463.
[S2] W. M. Kedir, K. T. Wondimu, and G. S. Weldegrum, “Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell,” Heliyon, vol. 9, no. 5, May 2023, doi:
10.1016/j.heliyon.2023.¢16475.
[53] Hồ Viết Quý, Các phương pháp phán tích công cụ trong Hoá học hiện đại. 2007.
Accessed: Apr. 07, 2024. [Online]. Available: http://archive.org/details/cac- phuong-phap-phan-tich-cong-cu-trong-hoa-hoc-hien-dai-ho-viet-quy
[54] L. Habte, N. Shiferaw, D. Mulatu, T. Thenepalli, R. Chilakala, and J. W. Ahn,
“Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method,”
Sustainability, vol. 11, no. 11, Art. no. 11, Jan. 2019, doi: 10.3390/sul 1113196.
[55] V. Queirés, M. Bezerra, and J. Feitosa, “Composite Superabsorbent Hydrogel of Acrylic Copolymer and Eggshell: Effect of Biofiller Addition,” Journal of the Brazilian Chemical Society, vol. 28, Oct. 2017, doi: 10.21577/0103- 5053.20170046.
[56] K. Workench, E. A. Zereffa, T. A. Segne, and R. Eswaramoorthy, “Eggshell- Derived Nanohydroxyapatite Adsorbent for Defluoridation of Drinking Water
43
from Bofo of Ethiopia,” Journal of Nanomaterials, vol. 2019, p. e245§312, Aug.
2019, doi: 10.1155/2019/2458312.
[S7] F. Murakami, P. Rodrigues, C, Campos, and M. Silva, “Physicochemical study of CaCO; from egg shells,” Ciencia E Tecnologia De Alimentos - CIENCIA
TECNOL ALIMENT, vol. 27, lui 2007, doi: 10.1590/S0101- 20612007000300035.
[S8] S. Owuamanam and D. Cree, “Progress of Bio-Calcium Carbonate Waste
Eggshell and Seashell Fillers in Polymer Composites: A Review,” Journal of Composites Science, vol. 4, no. 2, Art. no. 2, Jun. 2020, doi: 10.3390/jes4020070.
[59] B. L. M. Hendriksen er a/., “The role of steps in surface catalysis and reaction oscillations,” Nature Chem, vol. 2, no. 9, pp. 730-734, Sep. 2010, doi:
10.1038/nchem.728.
[60] D. Jeon and S. Yeom, “Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate,” Bioresource
technology, vol. 100, pp. 2646-9, Feb. 2009, doi:
10.1016/j.biortech.2008.11.035.
[61] A. P. Bayuseno, A. I. Prasetya, R. Ismail, B. Setiyana, and J. Jamari, “Reuse of waste crab shells for synthesis of calcium carbonate as a candidate biomaterial,”
RIC, vol. 15, no. 01, pp. 523-528, 2022, doi: 10.31788/RIC.2022.1516640.
[62] I. Fajriaty, I. Fidrianny, N. E. Kurniati, N. M. Fauzi, S. H. Mustafa, and I. K.
Adnyana, “In vitro and in silico studies of the potential cytotoxic, antioxidant, and HMG CoA reductase inhibitory effects of chitin from Indonesia mangrove crab (Scylla serrata) shells,” Sandi J Biol Sci, vol. 31, no. 5, p. 103964, May 2024, doi: 10.1016/j.sjbs.2024. 103964,
[63] K. C. Mmusi, S. Odisitse, and F. Nareetsile, “Comparison of CaO-NPs and Chicken Eggshell-Derived CaO in the Production of Biodiesel from Schinziophyton rautanenii (Mongongo) Nut Oil,” Journal of Chemistry, vol.
2021, p. €6663722, Feb, 2021, doi: 10.1155/2021/6663722.
[64] D. Wicaksono and R. D. Kusumaningtyas, “Synthesis of ZnO/CaO Catalyst from Eggshell Waste for Biodiesel Production,” Jina! Bahan Alam Terbarukan, vol. 8, no. 1, Art. no. 1, Jul. 2019, doi: 10.15294/jbat.v811.20185.
[65] J. Liu et al., “Conversion of Au(HI)-polluted waste eggshell into functional CaO/Au nanocatalyst for biodiesel production,” Green Energy & Environment, vol. 7, no. 2, pp. 352-359, Apr. 2022, doi: 10.1016/j.gee.2020.07.019.
[66] J. P. Singh, W. C. Lim, S. O. Won, J. Song, and K. H. Chae, “Synthesis and Characterization of Some Alkaline-Earth-Oxide Nanoparticles,” J. Korean Phys.
Soc., vol. 72, no. 8, pp. 890-899, Apr. 2018, doi: 10.3938/jkps. 72.890.
[67] K. Nagarajan, B. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and D.
Rajeswari, “Biosynthesis of Zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies,”
OpenNano, vol. 3, Jun, 2018, doi: 10.1016/j.onano.2018.06.001.
44
[68] S. B. Rana, V. K. Bhardwaj, S. Singh, A. Singh, and N. Kaur, “Influence of surface modification by 2-aminothiophenol on optoelectronics properties of ZnO nanoparticles,” Journal of Experimental Nanoscience, vol. 9, no. 9, pp.
877-891, Oct. 2014, doi; 10,1080/17458080.2012.736640,
[69] Y. H. Tan, M. O. Abdullah, C. Nolasco-Hipolito, and Y, H. Taufiq-Yap, “Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance,” Applied Energy, vol. 160, pp. 58-70, Dec. 2015, doi:
10.1016/j.apenergy.2015.09.023.
[70] M. Aziz, S. Triwahyono, A. Abdul Jalil, H. A. A. Rapai, and A. Atabani (A.E.
Atabani), “Transesterification of moringa oleifera oil to biodiesel using potassium flouride loaded eggshell as catalyst.” Malaysian Journal of Catalysis, vol. 1, pp. 22-26, Oct. 2016.
[71] V. Jadhav et al., “Green Synthesized Calcium Oxide Nanoparticles (CaO NPs) Using Leaves Aqueous Extract of Moringa oleifera and Evaluation of Their Antibacterial Activities,” Journal of Nanomaterials, vol. 2022, pp. 1-7, Jun.
2022, doi: 10.1155/2022/9047507.
[72] S. Yedurkar, C. Maurya, and P. Mahanwar, “Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach,” Open Journal of Synthesis Theory and Applications, vol. 5, no. 1, Art. no. 1, Jan. 2016,
doi: 10,4236/ojsta.2016.51001.
PHỤ LỤC
1. Kết quả TGA của CaO từ vỏ trứng ga.
tv . Kết qua TGA của xúc tác ZnO/CaO.
. Kết quả XRD của xúc tác CaO từ vỏ trứng ga.
. Kết quả XRD của xúc tác ZnO/CaO.
. Kết quả FT-IR của CaO từ vỏ trứng gà.
. Kết quả FT-IR của xúc tác ZnO/CaO.
. Kết quả SEM-EDX của CaO từ vỏ trứng gà.
. Kết quả SEM-EDX của xúc tác ZnO/CaO.
S2“ jọjọH CỔ 2A Cể G2. Kết qua GC-MS của một số sản phẩm thớ nghiệm transesterification sử dụng xỳc
tác ZnO/CaO.
PL 1
^exo
l&CaCO3(vo trung) Sample Weight
CaCO3(vo trung), 13.7420 mg
&CaCO3(vo trung) Heat Flow
CaCO3(vo trung), 13.7420 mg
Lab: METTLER STAR® SW 17.00
UNSEIS
PL2 noeownwnsn ©
Rel. peak maximum: 489.7 °C , -72.3 mW
2.3.3.174-9
200 300 400 500 600 800
Temperature (°C)
100
PL4
IMG1(1st) IMG1 C-K
O-K Mg-K Ca-K
CK wO-K WNMg-K mCa-K
16,.82+0,09 56.58+0.31
0.47+0,03
28.13+-0.20
;
Map_005 lespectrum Fitting ratio 0.0911
PL 4
IMG1(1st) IMG1 C-K
O-K Mg-K Ca-K
CK wO-K WMg-K mCa-K
Map 001_wholespectrum Fitting ratio 0.08
PL 5
IMG1(1st) IMG1 C-K
O-K Mg-K Ca-K
=€©- wO-K ỉMasg-K mCa-K M2n-L
Zn-L
7,96+0,04 1454+0.08.
44.17+0.21 60.59 +0.28
0.54+0.03 0.406+0.08.
40.19+0.31 21.98+0.17 7.19+0.12 241+004.
100.00 100.00 Map 022 wholespectrum Fitting ratio 0.0592.
PLS
IMG1(1st) IMG1 C-K
O-K Mg-K Ca-K
=€©- wO-K ỉMasg-K mCa-K M2n-L
Zn-L
`
PLS
Date: 9/22/2023 Time: 4:03:19 PM File: CaO - 900 - TRUNG User: HP Z2-G4
Counts
10000 -
5000
Position [*28] (Copper (Cu))
Page: 1 of 1
PL 5
Date: 9/22/2023 Time: 4:03:30 PM File: CaO - 900 - TRUNG User: HP Z2-G4
Counts
CaO - 900 - TRUNG
10000 -
1.69831 [A]
-2.77206 [A]
5000
1.38719 [A]
—T5.66262 [A] 3.87043 [A] 3.42959 [Á] 79 Toes È —2.62200 [A] 2.10359 [A] 1.92280 [A] 1.54926 [A] —1.47985 [A] > (A)
10 20 30 40 50 60 70
Position [*28] (Copper (Cu))
Page: 1 of 1
PL 5
Date: 9/22/2023 Time: 4:04:12 PM File: CaO - 900 - TRUNG User: HP Z2-G4
Counts
CaO - 900 - TRUNG
04-007-5231; Ca ( O H)2; Portlandite, syn; Calcium Hydroxide 01-090-0828; Ca O; Calcium Oxide
10000 —
5000 -
Page: 1 of 1
PL7
Date: 2/2/2024 Time: 10:55:54 AM File: ZnO-CaO DA NUNG User: HP Z2-G4
Counts
4000 -
3000 ~
2000
1000
Peak List
Page: 1 of 1
PL7
User: HP Z2-G4 File: 2nO-CaO DA NUNG
Date: 2/2/2024 Time: 10:56:05 AM
Counts
ZnO-CaO DA NUNG
(yl 8itf9't—
ly] !ii68£
4000 - —— ly) r8£6t'L——————=—— [ÿi 3Ipe9' — từ iS {yl 05£E§5'L— (yÌ £¿r2s'L [ý] E£9/# i LG. lý] 369##'L— [ý] 199/£'I ly] 9//S£'I ly) 6Z8Ff'1L— Lý] £¿ZL£'— [y] LL9£2'1—
ly) L8£29'(———==—<
|ýi §8#?§'¡===———_
(yÌ trL60?———=——-
ly) €£082 ————==
3
(Vll@§£§ttểrr~==—=<
[y] 9Z808'Z— — ly) 4s6£9'f —=£ ws
(yl ner ty] ¿9001 —=.
>
(y) Z3£t8'0:-
ly) 6290r tt
2000
1000
Position [*28] (Copper (Cu))
Peak List
Page: 1 of 1
PL6
Date: 2/2/2024 Time: 10:56:31 AM File: ZnO-CaO DA NUNG User: HP Z2-G4
Counts
ZnO-CaO DA NUNG
4000 "Ì 04-007-5231; Ca ( O H)2; Portlandite, syn; Calcium Hydroxide
mm 601-085-1109; Ca ( C O3 ); Calcite; Calcium Earbonate ll 04-023-7335; Zn O; Zincite, syn; Zinc Oxid¿
3000
2000 =
1000
0
Peak List |
04-007- 5231; Ca (O H }2: Porilandite, syn; Calum Hydroxide
Page: 1 of 1
Search results for: CaO 900 ( NHUNG)
Date: Mon Sep 25 12:14:21 2023 (GMT+07:00)
Search algorithm: Correlation PL?
Regions searched: 3494.44-680.76
%T %T
%T
%T
Search results list of matches
Index Match Compound Name Library Name
1 332 78.63 HYDROXIDE; CALCIUM, Licenced to L'oreal France HR Inorganics Ill.
2 1519 74.64 — Calcium oxide Georgia State Forensic Drugs
3 1519 74.45 Calcium oxide HR Georgia Stale Forensic Drugs
4 50 72.65 — Travertine #1, 0.064 wt % Commercial Materials Painter Minerals
5 620 71.59 GROUND CALCIUM CARBONATE #2 Polymer Additives and Plasticizers
6 17 70.88 Calcite U.S. Geological Survey Minerals
7 273 69.92 KAYOCEL 10-NC-50 industrial Coatings
8 620 69.51 GROUND CALCIUM CARBONATE #2 HR Polymer Additives and Plasticizers
9 3 68.91 Ankerite #1, 0.078 wa % Commercial Materials Painter Minerals 10 107 68.75 Chalk - calclum carbonate 90% brightness Paper Materials Library
Thermo
ELECTRON CORPORATION
4000 3500 3000
Spectrum:
Number of sample scans: 20 Region:
Number of background scans: 32 Resolution: 4.000
Sample gain: 1.0
Mirror velocity: 0.4747 Aperture: 150.00
Hit List:
Index 332
1519 1519
50 620
17
273 620
3 107
Search type:
PL?
CaO 900 ( NHUNG)
Mon Sep 25 12:14:32 2023 (
2500 2000 1500 1000 500
Wavenumbers (cm-1)
CaO 900 ( NHUNG) 3494 .44-680.76
Correlation
Match Compound name Library 78.63
France 74.64 74.45 72.65 71.59 70.88 69.92 69.51 68.91 68.75
HYDROXIDE; CALCIUM, Licenced to L’oreal Calcium oxide
Calcium oxide
Travertine #1, 0,064 wt %
GROUND CALCIUM CARBONATE #2 Calcite
KAYOCEL 10-NC-50
GROUND CALCIUM CARBONATE #2 Ankerite #1, 0.079 wt %
Chalk - calcium carbonate 90% brightness
HR Inorganics Ill.
Georgia State Forensic Drugs
HR Georgia State Forensic Drugs
Commercial Materials Painter Minerals Polymer Additives and Plasticizers
U.S, Geological Survey Minerals Industrial Coatings
HR Polymer Additives and Plasticizers Commercial Materials Painter Minerals
Paper Materials Library
Search results for: THANH ZnO-CaO DA NUNG Date: Fri Feb 02 16:42:49 2024 (GMT+07:00)
Search algorithm: Correlation
Regions searched: 3494.44-680.76
ơ
&
%T
%T
%T
100
3500 3000
Search results list of matches
Index Match Compound Name
1 107 95.04 Chalk - calcium carbonate 90% brightness
2 17 94.41 Calcite
3 3 93.56 Ankerile #1, 0,079 vA %
4 50 93.35 Travertine #1, 0.064 wt %
5 275 92.93 Calcium carbonate 6 1266 91.80 Hubercarb Q-4
7 620 90.11 GROUND CALCIUM CARBONATE #2
8 149 89.89 CYANOX 53
9 273 89.88 KAYOCEL 10-NC-50 I0 602 8927 MULTIFEX MM
1500 1000
Library Name
Paper Materials Library
U.S. Geological Survey Minerals
Commercial Materials Painter Minerals Commercial Materials Painter Minerals
Paper Materials Library
Coatings Technology
Polymer Additives and Plasticizers Rubber Compounding Materials
Industrial Coatings industrial Coatings
PL8 Fri Feb 02 16:42:58 2024 (G
Thermo
ELECTRON CORPORATION THANH ZnO-CaO DA NUNG
3000 2500 2000
Wavenumbers (cm-1) Spectrum: THANH ZnO-CaO DA NUNG
. Region: 3494.44-680.76
Number of sample scans: 20 Search type: Correlation Number of background scans: 32 Hit List:
Resolution: 4.000 Index Match Compound name Library
Sample gain: 1.0 107 95.04 Chalk - calcium carbonate 90% brightness Paper Materials Library
Mirror velocity: 0.4747 17 94.41 Calcite U.S. Geological Survey Minerals
Aperture: 150.00 3 93.56 Ankerite #1, 0.079 wt % Commercial Materials Painter Minerals
‘ , 50 93.35 Travertine #1, 0.064 wt % Commercial Materials Painter Minerals 275 92.93 Calcium carbonate Paper Materials Library
1266 91.80 Hubercarb Q-4 Coatings Technology
620 90.11 GROUND CALCIUM CARBONATE #2 Polymer Additives and Plasticizers
149 89.89 CYANOX 53 Rubber Compounding Materials
273 89.88 KAYOCEL 10-NC-50 Industrial Coatings
602 8927 MULTIFEX MM Industrial Coatings
Area Percent Report py. 1g y:\Nga-DHSP1301 12023\
WT RISD
! 30 Nov 2023 14:04
Integration Parameters: autoint1.e Integrator: ChemStation
Method :C:imsdchem\1\METHODS'\Biodiesel NGA1.M
Tile :
Signal : TIC: KT_R15.Didata.ms
peak R.T. first maxlast PK peak cor. corr. % of
# min scan scan scan TY height area %max. total
1 4.026 180 203 230BB2 66389 1618418 0.14% 0.060%
2 4.782 325 365 388BB6 57121 1789824 0.16% 0.066%
3 5.385 467 495 517BV 866524 16786806 1.49% 0.623%
4 6882 708 816 827BV 81886 8398671 0.74% 0.312%
5 6.967 827 835 842 VV 10 79261 2571884 0.23% 0.096%
7.053 842 853 896 VB 2128663 46346300 4.11% 1.721%
8.028 1045 1062 1085 BB 3 120252 2787773 0.25% 0.104%
8.917 1176 1253 1269 BV 3 665325 22319128 1.98% 0.829%
9.191 1269 1312 1389 VB 2 16665456 839058387 74.39% 31.162%
10 10.042 1482 1495 1520BB5 71456 2023668 0.18% 0.075%