15. Aken V. (2001), Biologycal Weapons: Research Projects of the German Army, Sunshine Project Backgrounder series No 7.
16. Alderton M., Paddle B. (1997), “A Sensitive Enzyme Linked Immunosorbent Assay (ELISA) for the Detection of Ricin in Blood”, DSTO Aeronautical and Maritime Research Laboratory, PO Box 4331, Melbourne Victoria 3001 Australia.
17. Ali M.H., Elsherbiny. M.E., Emara M. (2019), “Updates on Aptamer Research”, International Journal of Molecular Science 20(10), pp. 2511-2521.
18. Assaf S., Benhar I. (2010), "Toxin-Based Therapeutic Approaches," Toxins 2(11), pp. 2519-2583.
19. Audi J., Belson M., Patel M., Schier J. (2005), “Ricin poisoning: A comprehensive review”, The Journal of the American Medical Association 294(18), pp. 2342-2351.
132
20. Bagchi M., Stone S.Z., Lau. F.X., Bagchi D. (2009), Ricin and Abrin, Handbook of Toxicology of Chemical Warfare Agents, Publish by Elsevier Inc.
21. Balint G.A. (1974), “Ricin: the toxin protein of Castor oil seeds”, Toxicology 2(1), pp. 77-102.
22. Berger T., Eisenkraft A., Haim E.H., Kassirer M., Aran A.A., Fogel I. (2016),
“Toxins as biological weapons for terror-characteristics, challenges and medical countermeasures: a mini review”, Disaster and Military Medicine, pp 2-7.
23. Bianchini M., Radrizzani M., Brocardo M.G., Reyes G.B., Solveyra C.G., Coloma T.A.S. (2001), “Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein”, Journal of Immunological Methods 252(12), pp.191-197.
24. Biassoni R., Raso A. (2012), Methods in Molecular Biology Vol. Quantitative Real-Time PCR Methods and Protocols, Vol 1160, Humana Press, USA.
25. Bozza W.P., Tolleson W.H., Leslie A., Rosado R., Zhang B. (2015), “Ricin detection: Tracking active toxin”, Biotechnology Advances 33, pp. 117–123.
26. Brandon D. L. (2011), “Detection of Ricin Contamination in Ground Beef by Electrochemiluminescence Immunosorbent Assay”, Toxins 3(4), pp. 398-408.
27. Brinkworth C.S. (2010), “Identification of Ricin in Crude and Purified Extracts from Castor Beans Using On-Target Tryptic Digestion and MALDI Mass Spectrometry”, Analysis Chemistry 82, pp. 5246–5252.
28. Butterworth A.G., Lord J.M. (1983), “Ricin and Ricinus communis agglutinin subunits are all derived from a precursor polypeptide single size”, Euro Journal of Biochem 137, pp 57-65.
29. Campos A.R., Gao Z., Blaber M.G., Huang R., Schatz G.C., Duyne R.P.V., Haynes C.L. (2016), “Surface-Enhanced Raman Spectroscopy Detection of Ricin B Chain in Human Blood”, The Journal of Physical Chemistry C 120(37), pp. 20961- 20969.
133
30. Cháfer-Pericás C., Maquieira Á., Puchades. R (2010), “Fast screening methods to detect antibiotic residues in food samples”, Trends in Analytical Chemistry, 9 (10), pp.1038-1049.
31. Chen S.J., Huang C.C., Chang H.T. (2010), “Enrichment and fluorescence enhancement of adenosine using aptamer-gold nanoparticles, PDGF aptamer, and Oligreen” Talanta 81(12), pp.493-508.
32. Chen H. Y., Tran H., Foo L.Y., Sew T.W, Loke W.K. (2014), “Development and validation of an ELISA kit for the detection of ricin toxins from biological specimens and environmental samples”, Analytical and Bioanalytical Chemistry 4(06), pp. 5157–5169.
33. Clark L.C.J., Lyons C. (1962), “Electrode systems for continuous monitoring in cardiovascular surgery” Annals of the New York Academy of Sciences 102, pp.29–45.
34. Cummins M., Dogovski C., Robert R., Alderton M., Chong D., Proll D., Pontes-Braz L., Raicevic A., Hattarki M., Nuttall S., Dolezal O. (2014), “Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Application”, Antibodies 3, pp.215-231.
35. Damme E.J.M.V., Peumans W.J., Pusztai A., Bar S. (1998), Handbook of plant lectins: properties and biomedical applications. Chichester publish New York, New York, USA.
36. Daniel J, Fetter L, Jett S, Rowland T.J. (2017), “Microbial Toxins: method and protocol, chapter: Elecrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Protein”1600, Humana press, New Jersey, USA.
37. Day P.J., Owens S.R., Wesche J., Olsnes S., Roberts L.M., Lord J.M. (2001),
“An interaction between ricin and calreticulin to have implications for toxin trafficking”, Journal of Biological Chemistry 276(10), pp. 7202-7208.
134
38. DeÁvila B.E.F., Ramirez M.L., Báez D.F., Jodra A., Singh V., Kaufmann K., Wang J. (2016), “Aptamer-Modified Graphene-Based Catalytic Micromotors: Off- On Fluorescent Detection of Ricin”, Sensor 1(3), pp. 217–221.
39. Doan L.G. (2004), “Ricin: Mechanism of Toxicity, Clinical Manifestations and Vaccine Development, A Review”, Journal of Toxicology Clinical Toxicology 42(2), pp. 201–208.
40. Donnell N. (2017), “Sandwich Enzyme-Linked Immunosorbent Assay (ELISA), Optimization and Validation for Ricin Protein”, Bachelor of Laboratory Services, Metropolia University of Applied Sciences, Finland.
41. Dorsey R., Emmett G., Salem H. (2012), Ricin, Handbook of Toxicology of Chemical Warfare Agents, Published by Elsevier Inc, USA.
42. Ellington A.D., Szostak J.W.(1992), “Selection In vitro of single - strand DNA molecules that fold into specific ligand - binding structures”, Nature 355, pp. 850-852.
43. Fan S., Wu F., Martiniuk F., Hale M.L., Ellington A.D., Wong K.M.T. (2008),
“ Protective effects of anti - ricin A - chain A aptamer against ricin toxicity”, World Journal of Gastroenterology 14(41), pp. 6360-6365.
44. Felder E., Mossbrugger I., Lange M., Wửlfel R. (2012), “Simultaneous Detection of Ricin and Abrin DNA by Real-Time PCR (qPCR)”, Toxins 4, pp. 633- 642.
45. Ferapontova E.F., Olsen E.M., Gothelf K.V. (2008), “An RNA aptamer-based electrochemical biosensor for detection of theophylline in resume”, Journal of Amplication Chemistry 130(13), pp. 4256-4258.
46. Ferrini J.B., Martin M., Taupiac M.P., Beaumelle B.(1995), “Expression of functional ricin B chain using the baculovirus system”, Euro Journal Biochemistry 233(3), pp. 772-777.
47. Fodstad O., Johannessen J.V., Schjerven L., Pihl A. (1979), “Toxicity of abrin and ricin in mice and dogs”, Journal of Toxicology and environmental Health, 5(6), pp.1073-1084.
135
48. Fredriksson S.A., Hulst A.G., Artursson E., Jong A.D., Nilsson C., Baar B.V.(2005), ‘Forensic Identification of Neat Ricin and of Ricin from Crude Castor Bean Extracts by Mass Spectrometry’, Analytical Chemistry 77(6), pp. 1545–1555.
49. Funatsu M., Funatsu G., Ishiguro M., Nanno S., Hara K. (1971), “Structure and Toxic Function of Ricin and Purification Procedures of Ricin”, Proceedings of The Japan Academy 47(9), pp. 713-718.
50. Garber E.A.E. (2008), “Toxicity and Detection of Ricin and Abrin in Beverages”, Journal of Food Protection, 71(9), pp. 1875–1883.
51. Godal A., Olsnes S., Pihl A. (1981), “Radioimmunoassays of abrin and ricin in blood”, Journal of Toxicology and Environmental Health 8(3), pp. 409-417.
52. Green M.R., Sambrook J. (2015), “Preparation of Plasmid DNA by Alkaline Lysis with Sodium Dodecyl Sulfate: Minipreps”, Cold Spring Harbor Laboratory Press, New York.
53. Griffths G.D., Knight S.J., Holley J.L., Thullier P. (2013), “Evaluation by ELISA of Ricin Concentration in Fluids and Tissues after Exposure to Aerosolised Ricin, and Evaluation of an Immunochromatographic Test for Field Diagnosis”, Journal of Clinical Toxicology 3(2), pp. 1-6.
54. Guinness M.C.R., Mantis N.J. (2006), “Characterization of a novel high-affinity monoclonal immunoglobulin g antibody against the ricin b subunit”. Infection and Immunity 74, pp. 3463–3470.
55. Gupta R.C., (2015), “Handbook of Toxicology of Chemical Warfare Agents”, Academic Press, Massachusetts, USA.
56. Guyot J.M., Helmy M., Frasca S.L., Pignol D., Piéroni G., Beaumelle B.
(2003), “Identification of the Ricin Lipase Site and Implication in Cytotoxicity”, The Journal of Biologycal Chemistry 278(19), pp.17006-17011.
57. Haes A.J., Giordano B.C., Collins G.E. (2006), “Aptamer-Based Detection and Quantitative Analysis of Ricin Using Affinity Probe Capillary Electrophoresis”, Analytical Chemistry 78(11), pp. 3758–3764.
136
58. Hamula C.L.A., Zhang H., Li F., Wang Z., Le X.C, Li X-F. (2006), “Selection and analytical applications of aptamers”, Trends in Analytical Chemistry 25(7), pp.
681–691.
59. He X., Brandon D.L., Chen G., Keon T.M, Carter J.M. (2007), “Detection of Castor Contamination by Real-Time Polymerase Chain Reaction”, Journal of Agricultural and Food Chemistry 55, pp. 545-550.
60. He X., Carter J., Brandon D.L., Cheng L.W., McKeon T.A. (2007),
“Application of a Real Time Polymerase Chain Reaction Method to Detect Castor Toxin Contamination in Fluid Milk and Eggs”, J. Agric. Food Chem 55(17), pp.
6897-6902.
61. He X., McMahon S., Thomas A., Keon T.M, Brandon D.L. (2010),
“Development of a novel Immuno-PCR Assay for Detection of ricin in Ground Beef, Liquid Chicken Egg, and Milk”, Journal of Food Protection 73(4), pp.695-700.
62. Hu J., Kim J., Easley C.J. (2015), “Quantifying aptamer - protein binding via thermos fluorometric analysis” Analytical methods 7(17), pp. 7358-7362.
63. Ishiguro M., Matori Y., Tanabe S., Kawase Y., Sekine I., Sakakibara R. (1992),
“Biochemical studies on oral toxicity of ricin. V: The role of lectin activity in the intestial absorption of ricin”, Chemical and Pharmaceutical Bulletin 40(5), pp.
1216-1220.
64. IUCN (1972), Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on their Destruction (London Version).
65. Jang H.Y, Kim J.H. (1993), “Isolation and Biochemical of Ricin from Ricinus communis”, Korea Biochem Journal 26(1), pp. 98-104.
66. Jasheway K., Pruet J., Anslyn E.V., Robertus J.D. (2011), “Structure-Based Design of Ricin Inhibitors”, Toxins (Basel) 3(10), pp. 1233-1248.
67. Jolliffe N.A., Ceriotti A., Frigerio L., Roberts L.M. (2003), “The position of the proricin vacuolar targeting signal is functionally important”. Plant Molecular Biology 51(5), pp.631-641.
137
68. Jorge A. Aguado C., Penner G. (2008), “Fluorescence polarization based displacement assay for the determination of small molecules with aptamers”, Analysis Chemistry 80, pp. 8853–8855.
69. Keefe A.D, Cload S.T. (2008), “SELEX with modified nucleotides”, Current Opinion in Chemical Biology 12(4), pp.448-456.
70. Keague M.M., Giamberardino A., DeRosa M.C. (2011), “Chapter 2: Advances in Aptamer-based Biosensors for Food Safety”, Environmental Biosensors, pp. 17- 42.
71. Kikuchi T., Ohnuma T., Holland J.F., Spitler L.E. (1992), “Penetration of anti- melanoma immunotoxin into multicellular tumor spheroids and cell kill effects”, Cancer Immunology Immunotherapy 35, pp. 302-306.
72. Kinson M.H. (1988), The poisoner’s Handboook, Loompanics Unlimited: Port Townsend, WA, USA.
73. Koja N., Shibata T., Mochida K. (1980), “Enzyme - link Immunoassay of ricin”, Toxicon 18(56), pp. 611-618.
74. Kortepeter M.G., Parker G.W. (1999), “Potential biological weapons threats”, Emerging Infectious Diseases 5(4), pp 523–527.
75. Kulbachinskiy A.V. (2006), “Method for Selection of Aptamers to Protein Targets”, Biochemistry (Moscow) 72(13), pp. 1505-1518.
76. Kumar O., Sugendran K., Pant S. C., Vijayaraghavan R. (2004), “Effect of Ricin on Some Biochemical, Haematological, and Histopathological Variables in Mice”, Defence Science Journal 54(4), pp. 493-502.
77. Kumar O., Nashikkar A.B., Jayaraj R., Vijayaraghavan R., Prakash A.O.
(2004), “Purification and Biochemical Characterisation of Ricin from Castor Seeds”, Defence Science Journal 54(3), pp. 345-351.
78. Laemmli U.K. (1970), “Clevage of structural proteins during the assembly of the head of the bacteriophage T4”, Nature 227(5259), pp. 680-685.
138
79. Lamont E.A., He L., Warriner K., Labuzab T.P., Sreevatsan S. (2011), “A single DNA aptamer functions as a biosensor for ricin”, Analyst 136, pp. 3884 - 3892.
80. Ler S.G., Lee F.K., Gopalakrishnakone P. (2006), “Trends in detection of warfare agents: Detection methods for ricin, Staphylococcal enterotoxin B and T-2 toxin”, Journal of Chromatography A 1133(12), pp. 1-12.
81. Ligler F.S., Taitt C.R., Shriver-Lake L.C., Sapsford K.E., Shubin Y., Golden J.P. (2003) “Array biosensor for detection of toxins”, Analytical and Bioanalytical Chemistry, 377(3), pp. 469-477.
82. Lind K., Kubista M. (2005), “Develop and evaluation of three real-time immuno PCR assemblages for quantification of PSA”, Journal of Immunological methods 304, pp.107-116.
83. Liu C.W., Huang C.C., Chang H.T. (2009), “High selective DNA-based sensor for lead(II) and mercury(II) ions”, Analytical Chemisry 81, pp. 2383-2387.
84. Liu Q., Zhan J., Chen X., Zheng S. (2006), “Ricin A chain reaches the endoplasmic reticulum after endocytosis”, Biochemical and Biophysical Research Communications 343, pp 857–863.
85. Lord J.M. (1985), “Synthesis and intracellular transport and storage of the lectin protein precursors in endosperm from castor bean”. European Journal of Biochemistry 146, pp. 403-409.
86. Lord J.M, Harley S.M (1985), “Ricinus communis agglutinin B chain contains a fucosylated oligosaccharide side chain not present on ricin B chain”, FEBS Letters, 189(1), pp. 72-76.
87. Lord J.M., Roberts L.M., Robertus J.D. (1994), “Ricin: structure, mode of action, and some current applications”, The FASEB Journal 8(2), pp. 201-208.
88. Lubelli C., Chatgilialoglu A., Bolognesi A., Strocchi P., Colombatti M., Stirpe F. (2006), “Detection of ricin and other ribosome –inactivating proteins by an immune-polymerase chain reaction assay”, Analytical Biochemistry 355(1), pp.
102-109.
139
89. Mahmood T., Yang P.C. (2012), “Western Blot: Technique, theory, and trouble shooting”. North American Journal of Medical Sciences, 4(9), pp. 429–434.
90. Marimuthu C., Tang T-H., Tominaga J., Soo-Choon Tan S-C., Gopinath S.C.B.
(2012), “Single-stranded DNA (ssDNA) production in DNA aptamer generation”
Analyst 137, pp. 1307-1315.
91. Marshall K.A., Ellington A.D. (2000), “In vitro selection of RNA aptamers”.
Method in Enzymeology 318, pp.19-214.
92. Mayer G., Hover T. (2009), In Vitro Selection of ssDNA Aptamers Using Biotinylated Target Proteins, Nucleic Axít and Peptide Aptamers: Methods and Protocols, V535ê Humana Press, a part of Springer Science Business.
93. Melchior W. B., Tolleson W.H. (2010). “A functional quantitative polymerase chain reaction assay for ricin, Shiga toxin, and related ribosome-inactivating proteins”, Analytical Biochemistry, 396(2), pp. 204–211.
94. Mendonsa S., Bowser M.T. (2004), “In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis”. Analytical Chemistry (76)18, pp. 5387–5392.
95. Mlsna D., Monzingo A.F., Katzin B.J., Ernst S.,. Robertus J.D. (1993), “The structure recombinant ricin A chain at 2.3A0”, Protein. Science 2(3), pp. 429-435.
96. Montfort W., Villafranca J.E., Monzingo A.F., Ernst S.R., Katzin B., Rutenber E., Xuong N.H., Hamlin R., Jon D. Robertus J.D (1987), “The three-dimensional structure of ricin at 2.8A”, The Journal of Biological Chemistry 262(11), pp. 5398- 5403.
97. Musshoff F., Madea B. (2009), “Ricin poisoning and forensic toxicology”, Drug Testing Analysis 1(4), pp. 184–191.
98. Niazi J.H., Lee S.J., Kim Y.S., M.B. (2008), “ssDNA aptamers that selectively bind oxytetracycline”, Bioorganic & Medicinal Chemistry 16(3), pp. 1254–1261.
99. Niemeyer C.M., Adler M., Wacker R. (2007), “ Detecting antigens by quantitative immune-PCR”, Nature Protocols 2, pp. 1918-1930.
140
100. Olsnes S. (2004), “The history of ricin, abrin and related toxins”, Toxicon 44(4), pp. 361–370.
101. Olsnes S., Kozlov J.V. (2001), “Ricin”, Toxicon 39(11), pp. 1723–1728.
102. Patel M., Dutta A., Huang H. (2011), “A selective adenosine sensor derived from a triplex DNA aptamer”, Analytical and Bioanalytical Chemistry 400(9), pp.
3035-3040.
103. Plotz C.M., Singer J.M. (1956), “The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis”, The American Journal of Medicine 21(6), pp. 888–892.
104. Pristoupil T.I., Kramlová M., Stĕrbíková J. (1969), “On the mechanism of adsorption of proteins to nitrocellulose in membrane chromatography”, Journal of Chromatography 42, pp. 367-375.
105. Qian J., Lou X., Zhang Y., Xiao Y, Soh H.T. (2009), “Generation of high specific aptamers via micromagnetic selection”, Analysis of Chemistry 81(13), pp.
5490–5495.
106. Ramesh C.Gupta (2015), Handbook of Toxicology of Chemical warfare Agents, 2st Edition, 21st, USA.
107. Rodda T. (2013), Rapid Detection of Ricin in liquid foods using Surface- Enhanced Raman Spectroscopy, Master Thesis submitted to the faculty of the graduate school of the university of Minnesota, USA.
108. Rutenber E., Katzin BJ, Ernst S., Collins E., Mlsna D., Ready M, Robertus J.D. (1991), “The crystallographic refinement of Ricin at 2.5A resolution”, Proteins Structure Function and Bioinformatics 10(3), pp. 240-250.
109. Rutenber E. , Robertus J.D. (1991), “The structure of ricin B chain at 2.5A0 resolution”, Proteins 10(3), pp. 260-269.
110. Sampson T. (2003), “Aptamers and SELEX: the technology”. World Patent Information 25(2), pp.123–129.
111. Sano T., Smith C.L., Cantor C.R. (1992), “Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates”, Science 258, pp.
141 120-122.
112. Schep L.J., Temple W.A., Butt G., Beasley D.M.G. (2009), “Ricin as a weapon of mass terror - Separating fact from fiction”, Environmental International Journal 35(8), pp. 1267-1271.
113. Schu¨tze T., Wilhelm B., Greiner N., Braun H, Peter F., Mo¨rl M., Erdmann V.A., Lehrach H., Konthur Z., Menger M., Arndt P.F. (2011), “Probing the SELEX Process with Next-Generation Sequencing”, PLOS one 6(12), e 29604.
114. Sehgal P., Khan M., Kumar O., Vijayaraghavan R. (2010), “Purification, characterization and toxicity profile of ricin isoforms from castor beans”, Food and Chemical Toxicology 48, pp 3171–3176.
115. Shyu H.F., Chiao D.J., Hwan-Wun Liu H.W, Tang S.S. (2004), “Monoclonal Antibody-Based Enzyme Immunoassay for Detection of Ricin”, Hybridoma and Hybridomics 21(1), pp. 67-73.
116. Shyu R.H., Shyu H.F., Liu H.W, Tang S.S (2002), “Colloidal gold – based Immunochromatographyic assay for detection of ricin”, Toxicon 40(3), pp. 255-268.
117. Song K.M., Lee S., Ban C. (2012), “Aptamer and their biological aplications”, Sensors 12(1), pp. 612-631.
118. Song S., Liang Z., Zhang J., Wang L., Li G., Fan C. (2009), “Gold- nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis”, Angewandte Chemie International Edition, 48(46), pp.8670-8674.
119. Spitler L.E., del Rio M., Khentigan A., Wedel N.I., Brophy N.A., Miller L.L., Harkonen W.S., Rosendorf L.L., Lee H.M., Mischak R.P., Kawahata R.T., Stoudemire J.B., Fradkin L.B., Bautista E.E., Scannon P.J. (1987). “Therapy of patients with malignant melanoma using a monoclonal antimelanoma antibody ricin A chain immunotoxin”. Cancer research 47, pp. 1717-1723.
120. Tang J., Xie J., Shao N., Yan Y. (2006) “The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods”, Electrophoresis 27, pp. 1303 – 1311.
142
121. Thomas T.S., Lin T.T.S., Steven S., Li. L. (1980), “Purification and Physicochemical Properties of Ricins and Agglutinins from Ricinus comminus”, European Journal of Biochemistry 105(3), pp. 453-459.
122. Tregear J.W., Roberts L.M (1992), “The lectin gene family of Ricinus communis: cloning of a functional ricin lectin genes and pseudogenes three”, Plant Molecular Biology 18, pp. 515-525.
123. Tuerk C, Gold L. (1990), “Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase”, Science 249, pp. 505-510.
124. Tyagi N., Rathore S., Ghosh P. (2013), “Efficacy of Liposomal Monensin on the Enhancement of the Antitumour Activity of Liposomal Ricin in Human Epidermoid Carcinoma (KB) Cells”, Indian Journal of Pharmaceutical Sciences 75(1), pp.16-22.
125. Tyagi N., Tyagi M., Pachauri M., Ghosh P.C. (2015).
“Potential therapeutic applications of plant toxin-ricin in cancer:
challenges and advances”. Tumor Biology 36, pp. 8239-8246.
126. Tyagi N., Tyagi M., Pachauri M., Ghosh P.C. (2015), “Potential therapeutic applications of plant toxin-ricin in caner: challenges and advances”, Tumor Biology 36(11), pp. 8239–8246.
127. Wadkins R.M., Golden J.P., Pritsiolas L.M., Ligler F.S. (1998), “Detection of Multiple Toxin agents using a planar array immunosensor”, Biosensor and Bioelectronics 13(34), pp. 407-415.
128. Wang B., Guo C., Chen G., Park B., Xu B. (2012), " Following aptamer–ricin specific binding by single molecule recognition and force spectroscopy measurements”, Chemistry Communication 48, pp. 1644–1646.
129. Wang J., Yang Y., Zhou L., Wang J., Jiang Y., Hu K., Sun X., Hou Y., Zhu Z., Guo Z., Ding Y., Yang R. (2009), ‘Simultaneous Detection of Five Biothreat Agents in Powder Samples by a Multiplexed Suspension Array”, Immunopharmacology and Immunotoxicology 31(3), pp. 417-427.
143
130. Wang R.E., Zhang Y., Cai J., Cai W., Gao T. (2011), “Aptamer - based Fluorescent Biosensors”, Current Medicinal Chemistry 18(27), pp. 4175-4184.
131. Wang X., Dong P., He P., Fang Y. (2010), “A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer”. Analytica Chimica Acta 658(2), pp.128–132.
132. William H. (2004), “Other biologic toxin bioweapons: ricin, staphylococcal enterotoxin B, and trichothecene mycotoxins”, Dermatologic Clinic 3(22), pp. 257- 262.
133. Wu J., Wang Y., Jia P., Wang C., Hao Y., Peng H., Wei W, Li H. (2011),
“Immunochromatography detection of ricin in environmental and biological samples”, Nano Biomedicine and Engineering 3(3), pp. 169-173.
134. Woo B.H., Lee J.T., Lee K.C. (1988), “Purification of Sepharose-Unbinding Ricin from Castor Beans (Ricinus communis) by Hydroxyapatite Chromatography”, Protein Expression and Purification 13, pp. 150-154.
135. Worbs S., Skiba M., Soderstrom M,. Rapinoja M.L., Zeleny R., Russmann H., Schimmel H., Vanninen P., Fredrilsson S.A., Dorner B.G. (2015), “Characterization of Ricin and R.communis Agglutinin Reference materials” Toxins 7, pp. 4906-4934.
136. Xu H., Wang Y., Huang X., Li Y., Zhang H., Zhong X. (2012), “Hg2+ - mediated aggregation of gold nanoparticles for colorimetric screening of biothiols”.
Analyst 137, pp. 924–931.
137. Xu J.P., Song Z.G., Fang Y., Mei J., Jia L., Qin A.J., Sun J.Z., Ji J., B.Z.
(2010), “Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative.”, The Analyst 135(11), pp.3002-3007.
138. Xu W., Lu Y. (2010), “Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence”, Analytical Chemistry 82, pp. 574–578.
144
139. Xu Z., Morita K., Sato Y., Dai Q., Nishizawa S., Teramae N. (2009), “Label- free aptamer-based sensor using abasic site-containing DNA and a nucleobase- specific fluorescent ligand”, Chemical Communication 42, pp. 6445–6447.
140. Yadov G.S, Kumar V., Aggarwal N.K. (2016), Aptamers, Biotechnological Application of a next Generation Tool, Spinger Nature Singapore Pte Ltd.
141. Yin H.Q., Jia M.X., Yang S., Wang S.Q., Zhang J.G. (2012) “A nanoparticle- based bio-barcode assay for ultrasensitive detection of ricin toxin”, Toxicon 59, pp 12-16.
142. Yue J., Zhang L., Yang Z. (2009), “Detection of ricin toxin in water using immunoassays”, Journal of Environmental Analytical Chemistry 89(12), pp. 821–833.
143. Zheng J., Zhao C., Tian G., He L. (2017), “Rapid screening for toxin on letter papers using surface enhanced Raman spectroscopy”, Talana 162, pp. 552-557.
144. www.aoac.org 145. website: ebi.ac.uk
146. http://unafold.rna.albany.edu/?q=mfold 147. http://tetracore.com.