TAI LIEU THAM KHAO

Một phần của tài liệu Nghiên cứu phức chất của plumbagin với ti(iv) trong dung dịch và ứng dụng báo cáo tổng kết đề tài nghiên cứu khoa học cấp trường (Trang 50 - 55)

J. M. Shieh ef al., “Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-KB and AP-1 via ERK signaling pathway in A549 human lung cancer cells,” Mol. Cell. Biochem., vol. 335, no. 1-2, pp. 181-193, 2010,

doi: 10.1007/s11010-009-0254-7.

P. Srinivas, G. Gopinath, A. Banerji, A. Dinakar, and G. Srinivas, “Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells,” AZo.

Carcinog., vol. 40, no. 4, pp. 201-211, 2004, doi: 10.1002/me.20031.

L.C. Lin, L. L. Yang, and C. J. Chou, “Cytotoxic naphthoquinones and plumbagic acid glucosides from Plumbago zeylanica,” Phytochemistry, vol. 62, no. 4, pp. 619-622, 2003, doi: 10.1016/S003 1-9422(02)00519-8.

P. Dandawate et al., “Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells,” Bioorganic Med.

Chem. Lett., vol. 22, no. 9, pp. 3104-3108, 2012, doi: 10.1016/j.bmel.2012.03.060.

S. K. Tripathi, M. Panda, and B. K. Biswal, “Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy,” Food Chem. Toxicol., vol. 125, no. January, pp. 566-582, 2019, doi: 10.1016/j.fet.2019.01.018.

P. Panichayupakaranant and M. I. Ahmad, “Plumbagin and its role in chronic

diseases,” Ady. Exp. Med Biol., vol. 929, pp. 229-246, 2016, doi: 10.1007/978-3-319- 41342-6 10.

S. K. Mandala Rayabandla ef al., “Preparation, in vitro characterization,

pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma,” Drug Deliv., vol. 17, no. 3, pp. 103—

113, 2010, doi: 10.3109/10717540903548447.

M. Pan et al., “Plumbagin-loaded aptamer-targeted poly D,Llactic-co-glycolic acid-b- polyethylene glycol nanoparticles for prostate cancer therapy,” Medicine (Baltimore)., vol. 96, no. 30, pp. 1-7, 2017.

A. Pawar, R. Patel, $. Arulmozhi, and C. Bothiraja, “D-a-Tocopheryl polyethylene glycol 1000 succinate conjugated folic acid nanomicelles: Towards enhanced

49

[10]

(11)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

bioavailability, stability, safety, prolonged drug release and synergized anticancer effect of plumbagin,” RSC Adyv., vol. 6, no. 81, pp. 78106-78121, 2016, doi:

10.1039/c6ra12714b.

€. Bothiraja, H. S. Kapare, A. P. Pawar, and K. S. Shaikh, “Development of plumbagin-loaded phospholipid-Tween® 80 mixed micelles: Formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing.” Ther. Deliv., vol. 4, no. 10, pp. 1247-1259, 2013, doi: 10.4155/tde. 13.92.

R. Gowda, G. Kardos, A. Sharma, S. Singh, and G. P. Robertson, “Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma,” Mol. Cancer Ther., vol. 16, no. 3, pp. 440-452, 2017, doi: 10.1158/1535-7163.MCT- 16-0285.

S. B. Tiwari, R. M. Pai, and N. Udupa, “Temperature sensitive liposomes of

plumbagin: Characterization and in vivo evaluation in mice bearing melanoma B16F 1,”

J. Drug Target., vol. 10, no. 8, pp. 585-591, 2002, doi:

10.1080/106118602 1000054924.

M. Dutta and D. Das, “Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions,” 7rAC - Trends Anal. Chem., vol. 32, pp. 113-132, 2012, doi: 10.1016/j.trac.2011.08.010.

H. Qiao et al., “Targeting Osteocytes to Attenuate Early Breast Cancer Bone

Metastasis by Theranostic Upconversion Nanoparticles with Responsive Plumbagin Release,” ACS Nano, vol. 11, no. 7, pp. 7259-7273, 2017, doi:

10.102 1/acsnano.7b03 197.

V. P. Shinde and M. P. Wadekar, “Spectral and antibacterial investigations of Er ( III ) Juglonates xem,” Chemtech, vol. 10, no. 3, pp. 740-748, 2017.

YY. Wang, Q. Li, M. Deng, K. Chen, and J. Wang, “Self-assembled metal-organic frameworks nanocrystals synthesis and application for plumbagin drug delivery in acute lung injury therapy,” Chinese Chem. Lett., vol. 33, no. 1, pp. 324-327, 2022, doi:

10.1016/j.celet.2021.06.080.

P. Dandawate, K. Vemuri, K. Venkateswara Swamy, E. M. Khan, M. Sritharan, and S.

Padhye, “Synthesis, characterization, molecular docking and anti-tubercular activity of Plumbagin-Isoniazid Analog and its B-cyclodextrin conjugate,” Bioorganic Med.

Chem. Lett., vol. 24, no. 21, pp. 5070-5075, 2014, doi: 10.1016/j.bmel.2014.09.032.

K. Jitapunkul, P. Toochinda, and L. Lawtrakul, “Molecular dynamic simulation 50

[19]

[20]

(21)

[22]

[23]

[24]

[25]

[26]

[27]

[28]

analysis on the inclusion complexation of plumbagin with B-cyclodextrin derivatives in aqueous solution,” Molecules, vol. 26, no. 22, 2021, doi: 10.3390/molecules26226784.

S. Mukherjee, A. V. Sawant, S. S. Prassanawar, and D. Panda, “Copper-Plumbagin Complex Produces Potent Anticancer Effects by Depolymerizing Microtubules and Inducing Reactive Oxygen Species and DNA Damage.” ACS Omega, 2022, doi:

10.102 l/acsomega.2c0669 1.

M. Ishihara, H. Hattori, and S. Nakamura, “A review on biomedical applications of chitosan-based biomaterials,” Jnt. J. Pharma Bio Sci., vol. 6, no. 3, pp. P162—P 178,

2015.

F. Berglund and B. Carlmark, “Titanium, sinusitis, and the yellow nail syndrome,”

Biol. Trace Elem. Res., vol. 143, no. 1, pp. 1-7, 2011, doi: 10.1007/s12011-010-8828-

5.

E. Y. Tshuva and M. Miller, Coordination Complexes of Titanium(IV) for Anticancer Therapy, vol. 18, no. Iv. 2018. doi: 10.1515/9783110470734-014.

A. Tzubery, N. Melamed-Book, and E. Y. Tshuva, “Fluorescent antitumor titanium(IV) salen complexes for cell imaging.” Dalt. Trans., vol. 47, no. 11, pp. 3669-3673, 2018, doi: 10.1039/c7dt04828a.

E. Meléndez, “Titanium complexes in cancer treatment,” Crit. Rev. Oncol. Hematol., vol. 42, no. 3, pp. 309-315, 2002, doi: 10.1016/S1040-8428(01)00224-4.

N. Kumar, R. Kaushal, A. Chaudhary, S. Arora, and P. Awasthi, “Titanium based mixed ligand complexes: Synthesis, spectroscopic and in vitro antiproliferative studies,” Inorg. Nano-Metal Chem., vol. 48, no. 9, pp. 467-476, 2018, doi:

10.1080/24701556.2019.1569690.

M. Masrournia and A. Vaziry, “Preconcentration of Ti(IV) in ore and water by cloud point extraction and determination by UV-Vis spectrophotometry,” J. Anal. Chem., vol.

73, no. 2, pp. 128-132, 2018, doi: 10.1134/$10619348 18020077.

N. Pourreza and T. Naghdi, “Combined cloud point-solid phase extraction by dispersion of TiO 2 nanoparticles in micellar media followed by semi-microvolume UV-vis spectrophotometric detection of zinc,” Talanta, vol. 128, pp. 164-169, 2014, doi: 10.1016/j.talanta.2014.04.073.

R. Liu and P. Liang, “Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide

31

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

immobilized on silica gel,” J. Hazard. Mater., vol. 152, no. 1, pp. 166-171, 2008, doi:

10.1016/j.jhazmat.2007.06.081.

R. David Holbrook, D. Motabar, O. Quifiones, B. Stanford, B. Vanderford, and D.

Moss, “Titanium distribution in swimming pool water is dominated by dissolved species,” Environ. Pollut., vol. 181, pp. 68-74, 2013, doi:

10.1016/j.envpol.2013.05.044.

V. Geertsen, M. Tabarant, and O. Spalla, “Behavior and determination of titanium dioxide nanoparticles in nitric acid and river water by ICP spectrometry,” Anal. Chem., vol. 86, no. 7, pp. 3453-3460, 2014, doi: 10.102 1/ac403926r.

J. Lopez-Mayan, M. C. Barciela-Alonso, M. R. Dominguez-Gonzalez, E. Pefia- Vazquez, and P. Bermejo-Barrera, “Cloud point extraction and ICP-MS for titanium speciation in water samples,” Microchem. J., vol. 152, no. September 2019, p. 104264, 2020, doi: 10.1016/j.microce.2019.104264.

A. Shishov, S. Savinov, N. Volodina, I. Gurev, and A. Bulatov, “Deep eutectic solvent- based extraction of metals from oil samples for elemental analysis by ICP-OES,”

Microchem. J., vol. 179, p. 107456, Aug. 2022, doi: 10.1016/J.MICROC.2022. 107456.

M. Shirani, A. Aslani, F. Ansari, E. Parandi, H. R. Nodeh, and E. Jahanmard,

“Zirconium oxide/titanium oxide nanorod decorated nickel foam as an efficient sorbent in syringe filter based solid-phase extraction of pesticides in some vegetables,”

Microchem. J., vol. 189, p. 108507, Jun. 2023, doi: 10.1016/J.MICROC.2023. 108507.

D. M. Nguyen, A. Frazer, L. Rodriguez, and K. D. Belfield, “Selective fluorescence sensing of zinc and mercury ions with hydrophilic 1,2,3-triazolyl fluorene probes,”

Chem. Mater., vol. 22, no. 11, pp. 3472-3481, 2010, doi: 10.102 1/em100599g.

L. A. Currie, “Detection and quantification limits: origins and historical overview,”

Anal. Chim. Acta, vol. 391, no. 2, pp. 127-134, 1999, doi: 10.1016/s0003- 2670(99)00 105-1.

I. Singh, R. T. Ogata, R. E. Moore, C. W. J. Chang, and P. J. Scheuer, “Electronic spectra of substituted naphthoquinones,” Tetrahedron, vol. 24, no. 18, pp. 6053-6073, 1968, doi: 10.1016/S0040-4020(01)90989-5.

F. W. and R. Ahlrich, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design an assessment of accuracy,” Phys.

Chem. Chem. Phys, vol.7, p. 3297, 2005.

52

[38]

[39]

[40]

Reinhart Ahlrichs et al., (47) "ELECTRONIC STRUCTURE CALCULATIONS ON

WORKSTATION COMPUTERS”, Chemical Physics Letters, vol 162, P.165-169, 1989.

S. G. Balasubramani et al., “Turbomole: Modular program suite for ab initio quantum-

chemical and condensed-matter simulations,” J. Chem. Phys., vol. 152, p. 184107,

2020, doi: 10.1063/5.0004635.

Benjamin P. Pritchard ef al., “New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community,” . Chem. Inf: Model., vol 57, P. 4814-4820 (2019)

[41]

[42]

[43]

[44]

Z. W. Samali Liyanaarachchi, Chayanika Padumadasa, Gayan Priyadarshana, Fransisco Carlos Robles Hernandez, Ayomi Dilhari, Onur Sahin, Sandali Lakshika, Gayan

Wijesinghe, Manjula Weerasekera, Veranja Karunaratne, “Magnetite-Functionalized Plumbagin for Therapeutic Applications.pdf.” pp. 1361-1372, 2021.

V. V. Atuchin, V. G. Kesler, N. V. Pervukhina, and Z. Zhang, “Ti 2p and O Is core levels and chemical bonding in titanium-bearing oxides,” J. Electron Spectros. Relat.

Phenomena, vol. 152, no. 1-2, pp. 18-24, 2006, doi: 10.1016/j.elspec.2006.02.004.

Y. Gong, X. Ma, R. Dang, J. Liu, and J. Cao, “Synthesis of highly dispersed and versatile anatase TiO2 nanocrystals on graphene sheets with enhanced photocatalytic performance for dye degradation,” J. Mater. Sci. Mater. Electron. , vol. 28, no. 24, pp.

18883-18890, 2017, doi: 10.1007/s10854-017-784 1-2.

M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:

Se, Ti, V, Cu and Zn,” Appl. Surf: Sci., vol. 257, no. 3, pp. 887-898, 2010, doi:

10.1016/j.apsuse.2010.07.086.

33

Một phần của tài liệu Nghiên cứu phức chất của plumbagin với ti(iv) trong dung dịch và ứng dụng báo cáo tổng kết đề tài nghiên cứu khoa học cấp trường (Trang 50 - 55)

Tải bản đầy đủ (PDF)

(138 trang)