1.2.2.1 Giới thiệu bộ điều khiển CMAC
Trong những năm gần đây, nhiều nghiên cứu đã tiến hành thực hiện các nghiên cứu liên quan đến các hệ thống điều khiển phi tuyến. Lý thuyết hệ thống và lý thuyết điều khiển phản hồi truyền thống đã đưa ra các chương trình kiểm sốt khác nhau mà phụ thuộc vào các mơ hình hệ thống tốn học chính xác. Tuy nhiên, hầu hết các phương pháp tiếp cận này phụ thuộc nhiều vào hệ thống khi thực hiện trong thực tế. Một hệ thống điều khiển phát triển tốt phải triển khai hiệu suất cao ngay cả khi thực hiện trên những hệ thống phức tạp và không chắc chắn.
Lý thuyết điều khiển thông minh được sử dụng trong các mơ hình động để loại bỏ sự không chắc chắn. Các hệ thống dựa trên lý thuyết bao gồm: mạng nơron, mờ để điều khiển quá trình phức tạp với tham chiếu đến trải nghiệm của con người. Dựa trên mơ hình của Marr, Albus đã thiết lập một mơ hình tiểu não được gọi là “Cerebella Model Articulation Controller” (CMAC). Một mạng nơron mơ hình cấu trúc và chức năng của tiểu não con người, CMAC điều khiển mà không cần sử dụng bất kỳ thuật tốn phức tạp nào; nó là một cơ chế tra cứu bảng bao gồm một loạt các ánh xạ hàm.
Mơ phỏng theo mơ hình xử lý thơng tin trong tiểu não con người, gồm nhiều tế bào xếp chồng lên nhau. Khi nhận thông tin bên ngồi, chỉ một số tế bào
24 nào đó trong tiểu não sẽ bị kích thích để nội suy ngõ ra sử dụng các thông tin đã lưu trữ trong bộ nhớ.
CMAC thường được đề xuất cho việc nhận dạng và điều khiển cho hệ thống động lực học phức tạp, do tính chất học nhanh của nó và khả năng tổng quát hóa tốt.
1.2.2.2 Cấu trúc bộ điều khiển CMAC
CMAC là một mạng nhớ kết nối giống như perception khơng hồn tồn với các vùng perception chồng lên nhau. Đây là mạng được chứng minh có thể xấp xỉ một hàm phi tuyến thơng qua lĩnh vực quan tâm với độ chính xác tùy ý[4].
Hình 1. 19 Cấu trúc bộ điều khiển liên kết mơ hình tiểu não
Một CMAC gồm khơng gian đầu vào, liên kết không gian nhớ, tiếp nhận không gian nhớ, không gian trọng số và không gian đầu ra.
25
Không gian đầu vào (Input-I): Cho một ma trận 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑛𝑎]𝑇 ∈ ℜ𝑛𝑎, trong đó 𝑛𝑎 là số biến đầu vào của trạng thái. Mỗi biến đầu đầu vào phải được lượng tử hóa thành các vùng rời rạc (gọi là các phần tử) để có thể kiểm sốt. Số lượng các phần tử 𝑛𝑒 được gọi là độ phân giải.
Liên kết không gian nhớ (Association memory space-A): Một vài các
phần tử có thể được tích lũy thành một khối, số khối 𝑛𝑏 thường lớn hơn hoặc bằng hai. Biểu thị thành phần một liên kết không gian nhớ với 𝑛𝑐 = 𝑛𝑎 × 𝑛𝑏. Trong không gian này mỗi khối phải thực hiện một chức năng của lớp tiếp nhận không gian. Hàm Gaussian là hàm cơ bản của lớp tiếp nhận không gian.
𝜇𝑖𝑘 = 𝑒𝑥𝑝 [−(𝑝𝑖 − 𝑐𝑖𝑘)
2
𝑣𝑖𝑘2 ] , 𝑡𝑟𝑜𝑛𝑔 đó 𝑘 = 1,2, … , 𝑛𝑏
Trong đó: 𝜇𝑖𝑘 biểu thị lớp thứ k của đầu vào của không gian đầu vào 𝑐𝑖𝑘 là tham số dịch chuyển
𝑣𝑖𝑘 là độ rộng của hàm.
Tiếp nhận không gian (Receptive-field space-R): Là khu vực được hình
thành bởi các khối, thông tin của 𝜇𝑖𝑘 của mỗi lớp thứ k liên quan đến mỗi vị trí của lớp khơng gian tiếp thu. Các diện tích được tạo bởi nhiều miền đầu vào được gọi là hypercube. Mỗi phần tử được kích hoạt trong mỗi lớp trở thành một phần tử tích cực, do đó, trọng lượng của mỗi lớp có thể được xác định.
𝜑𝑘(𝑝, 𝑐𝑘, 𝑣𝑘) = ∏ 𝜇𝑖𝑘 𝑛𝑎 𝑖=1 = 𝑒𝑥𝑝 [∑−(𝑝𝑖− 𝑐𝑖𝑘) 2 𝑣𝑖𝑘2 𝑛𝑎 𝑖=1 ]
Có thể viết dưới dạng vector:
𝜙(𝑝, 𝑐, 𝑣) = [𝜑1, … , 𝜑𝑘, … , 𝜑𝑛𝑑]𝑇
Không gian trọng số (Weight memory space-W): Liên quan mỗi vị trí
của R với từng giá trị riêng biệt trong không gian trọng số W.
𝑊 = [𝑤1, … , 𝑤𝑝, … , 𝑤𝑛0]
Trong đó: 𝑤𝑝 = [𝑤1𝑝, … 𝑤𝑘𝑝, … 𝑤𝑛𝑑𝑝]𝑇
26
Không gian ngõ ra (Output space-O): Là tổng đại số của các nội dung hypercube với các trọng số được kích hoạt.
𝑂𝑝 = 𝒘𝑝𝑇𝝓 = ∑ 𝑤𝑘𝑝𝜙𝑘, 𝑝 = 1,2, … 𝑛𝑜
𝑛𝑑
𝑘=1
Ngõ ra của CMAC có thể được viết dưới dạng vector:
27
CHƯƠNG 2. THIẾT KẾ BỘ ĐIỀU KHIỂN
2.1. Kết nối Card NI myDAQ với mơ hình
Ta có thể kết nối Card NI myDAQ với máy tính thơng qua cổng USB.
Để kết nối ta chọn: Function » Measurement I/O » NI-DAQmx » DAQ Assistant.
Hình 2. 1 DAQ Assistant trong LabVIEW
+ Để lấy tín hiệu từ cảm biến siêu âm từ ngõ vào AI1 thông qua DAQ Assistans, ta chọn Acquire Signals » Analog Input » Voltage » AI1.
Thiết lập các thông số giới hạn điện áp ngõ vào Signal Input Range: Min là 0V và Max 10V cho DAQ Assistant.
28
Hình 2. 2 Thiết lập giới hạn điện áp cho DAQ Assistant
Tương tự, để thiết lập ngõ ra AO thông qua DAQ Assistans, ta chọn Generate Singals » Analog Output » Voltage » AO0.
Thiết lập các nút nhấn để thực thi chương trình
Tạo một nút nhấn có tên Setup để điều khiển đóng on/off cho động cơ và cảm biến siêu âm, ta tạo các DAQ Assistant DO2, DO3 tương ứng. Để kết nối giữa Push Button với các DAQ Assistant ta dùng một hàm Buil Array.
29
2.2. Sơ đồ kết nối
Hình 2. 4 Sơ đồ kết nối hệ thống điều khiển mức Bảng 5. 1 Các trạng thái điều khiển của mạch rơ le.
Bộ điều khiển: Card NI My DAQ Cảm biến siêu
âm Máy Tính
Cảm biến siêu âm
4-20mA 0-24VDC 0-10VDC Card NI-My DAQ Máy Tinh (LabVIEW) USB Bơm Q h Khuếch Đại Loại Điều khiển DO 0 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7 AI 0+ AI 1+ AO 0 AO 1 Bơm số 1 Bơm Analog 1 1 1 ✓ ✓ Nhiệt số 1 1 Nhiệt Analog 1 ✓ ✓ Lưu lượng 1 1 ✓ ✓ Áp suất 1 1 1 ✓ ✓
30
2.3. Lưu đồ giải thuật