Giao tiếp với công tắc cơ khí

Một phần của tài liệu CÁC HỌ VI MẠCH SỐ THÔNG DỤNG KỸ THUẬT SỐ CĐN (Trang 72 - 74)

Bài 6:GIAO TIẾP TTL VÀ CMOS

2.2.1 Giao tiếp với công tắc cơ khí

Các công tắc thường sử dụng để đóng mở nguồn cấp tạo trạng thái logic cho cổng nhưng do làm dạng tiếp xúc cơ khí nên khi đóng mở sẽ sinh ra hiện tượng dội.

Hình 1.78 Giao tiếp với công tắc cơ khí

Với điện gia dụng như đèn quạt thì hiện tượng dội này không ảnh hưởng gì cả vì dội xảy ra rất ngắn chỉ khoảng vài ms, đèn quạt không kịp sáng tắt hay quay dừng hoặc nếu có đi thì mắt cũng không thể thấy được. Nhưng với các vi mạch điện tử, rất nhạy với những thay đổi rất nhỏ và rất nhanh như vậy. Hiện tượng dội nảy sinh là do khi ta đóng công tắc thì thật ra là đóng mở nhiều lần rồi mới đóng hẳn hay khi mở công tắc thì thực ra cũng là công tắc cũng bị hở và đóng nhiều lần trước khi hở hẳn.

Bạn có thể kiểm tra hiện tượng dội này của công tắc với mạch đếm bố trí như hình 1.78.

Ở đây dùng cổng schmitt trigger CMOS để chuyển mạch tín hiệu tạo bởi công tắc. Do khi nhấn công tắc, gây ra dội, công tắc chuyển qua lại giữa mass và Vcc đưa vào cổng logic, Schmitt trigger rất nhạy khi áp vào lớn hơn hay nhỏ hơn áp ngưỡng của nó thì lập tức áp ra sẽ là mức cao hay mức thấp, mức này cung cấp cho mạch đếm và mạch hiển thị nếu được nối từ mạch đếm sẽ cho số đếm là số lần dội ở công tắc.

Hiện tượng này chỉ xảy ra vài chục ms nhưng với mạch logic đôi khi cũng là “nguy hiểm” rồi. Để chống dội ta có thể sử dụng phần cứng hay phần mềm. Chẳng hạn ở bàn phím máy tính đều là các công tắc cơ khí, 1 phần mềm trong máy sẽ dò đọc công tắc đó chuyển tiếp trong một khoảng thời gian ngắn khoảng 20ms, nếu thực sự công tắc được nhấn thì mức logic mới ấn ổn định sau khoảng thời gian dội ấy và phần mềm mới chấp nhận được trạng thái của công tắc. Còn ở đây trình bày cách chống dội bằng tụ và mạch chốt.

Chống dội dùng tụ lọc đầu vào

Tụ C giá trị khoảng 0,01us được nối ở ngõ vào của cổng logic như hình vẽ. Khi nhấn công tắc, tụ C nạp qua công tắc vào tụ. Tới khi công tắc nhả ra, có hiện tượng dội tụ sẽ xả qua R xuống mass. Thời hằng xả là 100k x 0,01uF = 1ms lớn hơn chu kì dội tối đa của công tắc chỉ vài trăm ns. Do đó khi này cổng logic chưa chuyển mạch, tới khi áp xả trên tụ giảm xuống tới dưới mức ngưỡng của cổng logic thì trạng thái logic ngõ ra mới lật lại (hình 1.79).

Hình 1.79 Cách chống dội dùng tụ lọc

Cổng logic NOT được dùng có thể là loại TTL thường hay Schitt trigger Chống dội dùng mạch chốt

Mạch chốt cơ bản dùng 2 cổng nand mỗi cổng 2 ngõ vào có hồi tiếp chéo được kết hợp với 2 điện trở kéo lên mắc ở ngõ vào để tạo thành mạch chống dội từ công tắc

Khi công tắc bật lên vị trí 1 (như hình 1.80) ngõ vào NAND1 ở mức 0 do đó ngõ ra Q' = 1

Q' = 1 đưa về ngõ vào NAND2, đồng thời ngõ vào còn lại ở mức 1 đó nối qua R2 lên Vcc nên ra Q= 0, Q= 0 đưa về ngõ vào nand1 khi này nếu dội có xảy ra đi chăng nữa làm cho ngõ vào từ công tắc từ 1 xuống 0 thì do = 0 nên ngõ ra nand1 luôn là 1.

Như vậy chứng tỏ rằng Q và không hề bị ảnh hưởng bởi công tắc bị dội. Trạng thái của nó chỉ chuyển mạch dứt khoát một lần khi công tắc được nhấn qua a và chỉ lật lại trạng thái khi công tắc được nhấn qua 2.

một dạng khác cũng có thể chống dội được thể hiện như hình 1.82:

Hình 1.82 Chống dội dùng cổng NOT

Bật công tắc sang mass, ngõ ra I2 ở mức 0 đưa về qua R ngõ vào I1 nên vẫn làm I2 ra ở 0 cho dù công tắc có bị dội lên xuống nhiều lần. Do đó ngõ ra I3 luôn ở mức 1

Ngược lại nhấn công tắc qua Vcc, ngõ ra I2 mức 1 đưa về ngõ vào I1 mức 1 lại vẫn làm I2 ra mức 1 bất chấp công tắc bị dội, kết quả ra I3 luôn ở mức 0

Cổng logic được sử dụng trong mạch chốt ở trên có thể là loại TTL hay CMOS thường hay schmitt trigger đều được cả như cổng NOT 4069, 4040; cổng NAND 7400, 4011, 74132,…

Một phần của tài liệu CÁC HỌ VI MẠCH SỐ THÔNG DỤNG KỸ THUẬT SỐ CĐN (Trang 72 - 74)