(Nguồn: Phân tích dữ liệu – phụ lục số III)
Với kết quả từ bảng trên, chúng ta có thể nhận thấy với mức ý nghĩa 1% hầu hết các biến độc lập đều có ý nghĩa kiểm định đối với yếu tố phụ thuộc (1-tailed = 0.000 < 0.01). Riêng chỉ có yếu tố Kinh nghiệm tham gia bảo hiểm từ trước có mức ý nghĩa ngang bằng với 0.01, vì vậy, khơng có mối liên hệ tương quan giữa yếu tố này với yếu tố phụ thuộc. Tuy nhiên, tác giả vẫn sẽ giữ yếu tố này ở lại trong bảng
phân tích nhằm tiến hành phân tích hồi qui, xác định chính xác hơn mối liên quan giữa yếu tố này và yếu tố phụ thuộc.
Bên cạnh đó, hiện tượng đa cộng tuyến khơng xảy ra giữa các biến độc lập với nhau. Điều này được làm rõ bởi giá trị Pearson Corelation của yếu tố phụ thuộc và độc lập nằm trong khoảng từ 0.172 đến 0.574 đều lớn hơn 0.
4.4.2 Phân tích và kiểm định mơ hình 4.4.2.1 Phân tích
Phương trình hồi quy tuyến tính cho phép biểu diễn mối quan hệ giữa 7 yếu tố độc lập tác động đến yếu tố phụ thuộc – Quyết định tham gia bảo hiểm AIA Việt Nam – khu vực TP.HCM có dạng như sau:
QD tham gia BHNT = 1 * X1 + 2 * X2 + 3 * X3 + 4 * X4 + 5 * X5 + 6 * X6 + 7 * X7
QD tham gia BHNT = 1 * (KN)+ 2 * (NT) + 3 * (TH) + 4 * (YK) + 5 * (RC) + 6 * (TL) + 7 * (DC)
4.4.2.2 Kiểm định
Sử dụng phương pháp đưa vào một lượt, trong đó:
Biến phụ thuộc có kí hiệu là QD, thang đo từ 1 đến 5 (Từ 1: Hồn tồn khơng đồng ý tăng dần đến 5: Hồn tồn đồng ý). Trong đó lại bao gồm 4 biến quan sát QD1, QD2, QD3, QD4.
Hằng số .
Các biến độc lập: X1 = KN, X2 = NT, X3 = TH, X4 = YK, X5 = RC, X6 = TL, X7 = DC.
4.5 Kiểm định giả thiết
4.5.1 Đánh giá sự tương quan của mơ hình