6. KẾT CẤU ĐỀ TÀI
3.4 MỘT SỐ VẤN ĐỀ LƯU Ý VÀ CÁC HƯỚNG MỞ RỘNG ỨNG DỤNG MƠ
trung bình khơng cĩ ý nghĩa thống kê, vậy mơ hình GARCH-M khơng phù hợp trong trường hợp này.
Thứ hai, tính chất cân xứng thơng tin hay rủi ro bất cân xứng thơng tin được ước lượng
thơng qua mơ hình TGARCH(1,1). Kết quả ước lượng cho thấy hệ số υ1 cĩ ý nghĩa
thống kê. Như vậy, cĩ sự khác biệt giữa tin tức tốt và tin tức xấu. Nĩi cách khác, ảnh hưởng của tin tức xấu tác động mạnh đến thị trường hơn là thơng tin tốt tại sàn niêm yết Hà Nội.
3.4 MỘT SỐ VẤN ĐỀ LƯU Ý VÀ CÁC HƯỚNG MỞ RỘNG ỨNG DỤNG MƠ HÌNH HÌNH
3.4.1 Một số vấn đề lưu ý
Bài luận chỉ dừng ở mức độ giới thiệu một cơng cụ kỹ thuật đang được sử dụng
rộng rãi trong giới học thuật lẫn ứng dụng thực tiễn khi phân tích dự báo giá và rủi ro cho thị trường chứng khốn Việt Nam. Đĩ chính là mơ hình ARIMA và ARCH/GARCH. Các ứng dụng cao và sâu hơn chưa được nghiên cứu. Ví dụ như bài luận chỉ đưa ra các mơ hình cơ bản của ARCH/GARCH, chưa cập nhật so sánh
đầy đủ các mơ hình ARCH/GARCH để chọn ra mơ hình tốt nhất.
Xác định các dạng mơ hình ARIMA, ARCH/GARCH cĩ thể dựa vào giản đồ
tương quan gần như là một nghệ thuật, vì vậy kinh nghiệm và linh động của người
ứng dụng mơ hình rất quan trọng để tránh tình trạng bỏ sĩt các mơ hình cĩ ý nghĩa
khác.
Giai đoạn sideways hiện nay của thị trường cổ phiếu niêm yết tại sàn Tp. Hồ Chí
Minh hay xu hướng giảm đều của thị trường cổ phiếu niêm yết Hà Nội giúp ta dễ
dàng xác định mơ hình ARIMA dự báo bởi tính ổn định của chuỗi dữ liệu làm cho nĩ cĩ xu hướng dừng ngay ở sai phân bậc một và các yếu tố tự tương quan, trung bình trượt chỉ xảy ra ở độ trễ thứ nhất. Tuy nhiên khi thị trường biến động cao thì liệu đặc điểm của mơ hình ARIMA luơn đúng như vậy khơng lại chưa được xem
Mơ hình ARIMA và ARCH/GARCH với ý nghĩa mơ phỏng lại hành vi diễn biến trong quá khứ, từ đĩ làm cơ sở cho dự báo kế tiếp. Nhưng thị trường tài chính vốn biến động cao, các tác động của các yếu tố thời tương lai chưa được xem xét nên dự báo sử dụng mơ hình ARIMA, ARCH/GARCH thường phải kèm theo giả định là kịch bản của tương lai sẽ hồn tồn giống như những gì mơ hình mơ phỏng quá khứ. Do đĩ mơ hình ARIMA và ARCH/GARCH cĩ vẻ chỉ phù hợp dự báo các
điểm tương lai rất gần với thời điểm cuối cùng của chuỗi dữ liệu. Tính dự báo ngắn
của mơ hình ARIMA và ARCH/GARCH thể hiện ở đặc điểm này.
Ngồi ra, để phân tích dự báo giá & rủi ro cho Vn-Index, người ta thường hồi quy
các nhân tố tác động đến Vn-Index như lãi suất, tăng trưởng GDP, biến động giá
chứng khốn thế giới, biến động thị trường vàng, ngoại hối... để tạo ra mơ hình hồi quy trong đĩ biến phụ thuộc là Vn-Index và các biến độc lập là các nhân tố tác
động. Phân tích dự báo giá & rủi ro Vn-Index dựa vào mơ hình hồi quy kiểu như
vậy với các điều chỉnh cĩ thể từ nhận định xu hướng biến động sắp tới. Trong khi
đĩ, mơ hình ARIMA và ARCH/GARCH chưa đề cập và đo lường tác động của
các nhân tố khác nhau đối với thị trường nên sẽ khơng phù hợp cho các nhà làm chính sách tin dùng.
3.4.2 Hướng mở rộng ứng dụng mơ hình
Đề tài nghiên cứu ứng dụng mơ hình ARIMA, ARCH/GARCH để dự báo giá cho
chỉ số giá chứng khốn. Mở rộng ra, mơ hình cĩ thể được tiếp tục nghiên cứu áp
dụng dự báo giá cho từng cổ phiếu riêng lẻ.
Mơ hình ARIMA dự báo cho giai đoạn ngắn hạn vì hầu như nĩ mơ phỏng khá tốt
quá trình diễn biến dữ liệu của giá chứng khốn cũng như hành vi của nhà đầu tư trên thị trường. Tuy nhiên tương lai cĩ một điều chắc chắn là khơng cĩ gì là chắc chắn nên một cú sốc lớn cĩ khả năng làm giá chứng khốn đi chệch khỏi quỹ đạo
đáng lẻ nĩ phải đi theo đồ hình mà mơ hình vẽ ra. Vì vậy cần phải cĩ điều chỉnh
kết quả dự báo sao cho phù hợp với tình hình thực tế. Điều này cần kinh nghiệm,
độ nhạy bén của người phân tích. Mơ hình ARIMA giờ đây trở thành một cơng cụ
dự báo mang tính tham khảo rất hữu ích đặc biệt khi kết hợp với phân tích kỹ thuật
để đưa ra chiến lược lướt sĩng ngắn hạn cho nhà đầu tư “lượm bạc cắc”.
Thị trường cổ phiếu niêm yết Việt Nam thuộc dạng biến động cao, mơ hình
nghiêng về sideways hoặc cĩ xu hướng giảm đều. Ý tưởng mở rộng đề tài nghiên
cứu cĩ thể là xem xét đặc điểm của mơ hình ARIMA, ARCH/GARCH thay đổi
như thế nào khi ta thay đổi khoảng thời gian xem xét và tính chất thời gian của chuỗi dữ liệu theo tuần, tháng thay vì theo ngày như trong đề tài.
Như đã nĩi ở trên, mơ hình ARCH/GARCH được sử dụng trong bài luận chỉ dự
báo và phân tích rủi ro của thị trường dựa trên q trình tự tương quan và trung bình trượt của chuỗi dữ liệu hay nĩi cách khác nĩ dựa trên diễn biến hành vi trong
quá khứ để dự báo và phân tích hành vi trong tương lai cĩ nghĩa là mơ hình xem
nhẹ các cú sốc của thời tương lai. Mặc khác trong điều hành chính sách, mơ hình trở nên khơng cĩ ý nghĩa đáng kể vì nhà làm chính sách khơng biết tác động thị trường từ đâu bởi khơng nhận diện rõ mức độ quan trọng của các nhân tố. Vì vậy, rất cần thiết xây dựng một mơ hình ARCH/GARCH mới cĩ thể kết hợp với mơ hình dự báo nhân quả để nhận diện, phân loại, và đo lường tác động của các nhân tố khác nhau đến thị trường. Từ đĩ các nhà làm chính sách cĩ thể tác động đến thị
trường với liều lượng các giải pháp chính sách tương ứng tỷ trọng ảnh hưởng của
nhân tố tác động đến thị trường. Ngồi ra trong cơng tác dự báo, kết quả truy xuất
từ mơ hình ARIMA và ARCH/GARCH cĩ thể được điều chỉnh để đưa ra dự báo
phù hợp hơn trong một mơi trường biến động (tham khảo Phụ lục A).
So sánh mơ hình ARIMA, ARCH/GARCH với các mơ hình dự báo đã được biết
như mơ hình nhân quả, mơ hình chuỗi thời gian đơn giản...trong việc dự báo giá chứng khốn.
Trong các loại mơ hình ARCH/GARCH thì mơ hình GARCH-M thường được sử
dụng để đánh giá tính hợp lý của giả thuyết rủi ro cao, lợi nhuận cao cĩ đúng
khơng tức là ta kiểm chứng được một nhà đầu tư đầu tư vào thị trường rủi ro nhưng phần bù rủi ro được yêu cầu cĩ tương xứng với mức độ chấp nhận rủi ro của nhà
đầu tư khơng. Bài luận đã cho thấy suất sinh lợi của thị trường cổ phiếu niêm yết
Việt Nam mang lại khơng tương thích với rủi ro hoặc mệnh đề “lợi nhuận cao, rủi
ro càng cao” khơng đúng với thị trường Việt Nam hiện nay. Ứng dụng tương tự
cho tất cả các ngành hoặc từng cổ phiếu hồn tồn cĩ thể làm được. Điều này vơ
cùng cĩ ích trong cơng tác định giá khi mà ta hồn tồn cĩ thể kiểm chứng được
đây, mơ hình GARCH-M cĩ thể được dùng làm cơ sở cho việc lựa chọn phương
pháp định giá thích hợp trong phân tích cơ bản cổ phiếu ví dụ mơ hình CAPM hoặc APT cĩ cần thiết sử dụng khơng khi mà thực tế dữ liệu chứng minh rủi ro của cổ phiếu hoặc ngành nào đĩ khơng cĩ tác động nào đến tỷ suất sinh lời của cổ phiếu hoặc ngành.
Trên cơ sở như vậy, ta cĩ thể dựa vào mơ hình ARCH/GARCH xây dựng một bộ quy chuẩn đánh giá cụ thể rủi ro của từng ngành, từng cổ phiếu cho từng giai đoạn
để làm căn cứ hỗ trợ cho quyết định đầu tư.
Một ứng dụng khác từ mơ hình ARIMA, ARCH/GARCH trong định giá là ta hồn
tồn cĩ thể dùng mơ hình để dự báo các chỉ tiêu tài chính trong bảng dự phĩng các số liệu tài chính làm cơ sở cho việc chiết khấu dịng tiền để xác định giá trị hiện tại
của cổ phiếu. Thực tế hiện nay, các phương pháp định giá cổ phiếu FCFE3.2,
FCFF3.3, DCF3.4... thường được sử dụng để đánh giá giá trị thực của cổ phiếu một
cách khoa học nhưng các phương pháp tưởng chừng là mang nhiều ý nghĩa nhất vì nĩ phản ánh giá trị nội tại của cổ phiếu thì lại thiếu chính xác nhất vì dữ liệu đầu vào cho mơ hình hầu hết là các dự báo tùy tiện và thiếu cơ sở. Ngay cả khi đã dùng các phương pháp mơ hình thống kê như mơ hình nhân quả hay mơ hình chuỗi thời gian ta cũng gặp một số vấn đề khĩ khăn. Đĩ là với mơ hình nhân quả ta khơng thể
ước lượng hết được các nhân tố tác động hoặc kết quả ước lượng là trung bình cĩ
sai số trong khi sai số lại khơng ước lượng được. Cịn dùng mơ hình dự báo chuỗi thời gian đơn giản thì ta lại gặp phải vấn đề tập quán đề ra kế hoạch năm sau cao hơn năm trước... Vì vậy nếu ta sử dụng mơ hình ARIMA, ARCH/GARCH để xây dựng nên bảng kế hoạch kinh doanh, bảng báo cáo tài chính...thì ta cĩ được những dữ liệu dự phĩng khoa học và đáng tin cậy hơn từ đĩ làm tăng tính thuyết phục cho kết quả định giá đặc biệt là từ các phương pháp chiết khấu dịng tiền.
KẾT LUẬN CHƯƠNG 3
Cĩ nhiều cách để dự báo xu hướng của thị trường nhưng dự báo chỉ số giá cụ thể thì rất khĩ khăn vì gần như chúng ta khơng thể dự báo được hết các biến rủi ro cũng như
các nhân tố tác động đến thị trường. Mơ hình ARIMA tỏ ra thích hợp hơn khi khắc
Bằng việc mơ phỏng hành vi của chuỗi dữ liệu trong quá khứ, từ đĩ nĩ xây dựng nên hướng đi cho tương lai. Theo cách làm như vậy chúng ta đã tìm được mơ hình dự báo
ARIMA(1,0,1), ARMA(0,1,0) tương ứng cho chỉ số Vn-Index và Hn-Index. Phương
trình biểu diễn của hai mơ hình như sau:
Phương trình dự báo chỉ số Vn-Index:
= 19,3136 + 0,96 + 0,22et-1
Phương trình dự báo chỉ số Hn-Index:
= - 0,311
Hai phương trình cho thấy Vn-Index phụ thuộc đến hai yếu tố đĩ là giá trị Vn-Index ngày hơm qua và cả sai số trước đĩ trong khi Hn-Index đang cĩ xu hướng giảm đều. Ta cũng cĩ thể thấy điều đĩ qua đồ hình sau:
Đồ thị 3.10 – Chỉ số Vn-Index và Vn-Index dự báo
Rõ ràng thị trường cổ phiếu niêm yết Thành phố Hồ Chí Minh gần đây đang sideways
trong khi thị trường niêm yết Hà Nội lại giảm đều. Cả hai mơ hình dự báo đều mơ
phỏng khá tốt diễn biến thị trường trong giai đoạn từ 11/11/2009 đến 11/11/2010. Giả sử khơng cĩ yếu tố tác động bất ngờ thì ta dễ dàng dự đốn được chỉ số của ngày hơm sau theo như hai phương trình trên.
Mơ hình ARIMA cịn được sử dụng để xây dựng mơ hình dự báo cho suất sinh lợi thị
trường. Chúng ta cũng đã tìm được mơ hình ARMA(0,1) cho và ARMA(0,0)
cho . Một nhà đầu tư quan tâm đến thị trường khơng chỉ về giá cổ phiếu, suất
sinh lời mà cịn dự báo được mức độ dao động của thị trường cĩ nghĩa là rủi ro thị
trường. Mơ hình ARMA dự báo bằng phương pháp bình phương bé nhất (OLS) với giả
định phương sai khơng thay đổi hay được gọi là trường hợp phương sai khơng cĩ điều
kiện. Tuy nhiên, các chuỗi dữ liệu chứng khốn thường cĩ xu hướng dao động cao vào một số giai đoạn theo sau một số giai đoạn tương đối ít biến động. Sự dao động như vậy là do tác động của yếu tố thơng tin và hành vi đám đơng của nhà đầu tư trên thị trường. Giả định phương sai khơng thay đổi theo thời gian thường khơng phù hợp nữa. Thay vào đĩ, mơ hình ARCH/GARCH được sử dụng để phân tích dự báo rủi ro của thị trường chứng khốn. Chúng ta đã xây dựng mơ hình dự báo rủi ro cho hai thị trường theo phương trình:
ht = γ0 + + γ1
Rủi ro của thị trường phụ thuộc vào biến động của thị trường trước đĩ.
Ngồi ra, mơ hình ARCH/GARCH cịn chứng minh cĩ cơ sở hai đặc điểm rủi ro của thị trường cổ phiếu niêm yết Việt Nam bao gồm:
Suất sinh lợi mang lại của thị trường cổ phiếu niêm yết Việt Nam khơng tương
thích với rủi ro hoặc mệnh đề “lợi nhuận cao, rủi ro càng cao” khơng đúng với thị trường Việt Nam hiện nay.
Thị trường niêm yết thành phố Hà Nội đang tồn tại tình trạng bất cân xứng
thơng tin khi tin xấu tác động đến thị trường mạnh hơn là tin tốt, trong khi đĩ
tin tốt và tin xấu tác động đến thị trường niêm yết thành phố Hồ Chí Minh như nhau. Điều này cũng giải thích cho diễn biến thị trường hiện nay khi chỉ số Vn- Index đang sideways vì các tin tức tốt và xấu gần như bão hịa tác động đến thị trường nhưng Hn-Index lại đang giảm đều do tin xấu gần đây xuất hiện nhiều hơn và tác động mạnh hơn là tin tốt.
Tuy nhiên, mơ hình ứng dụng trong bài luận chỉ dừng ở mức độ tiếp cận một phương pháp, một cơng cụ phân tích dự báo rủi ro mới. Cịn nhiều vấn đề cần lưu ý cĩ thể nêu ra như sau: Cần cập nhật nhiều mơ hình khác để làm đối trọng so sánh; Xác định mơ hình ARIMA, ARCH/GARCH là một nghệ thuật nên người phân tích phải linh động và cĩ kinh nghiệm; Mơ hình ARIMA, ARCH/GARCH cĩ vẻ phù hợp cho dự báo ngắn hạn và khơng phù hợp cho các nhà làm chính sách tin dùng. Các hướng nghiên cứu
ứng dụng mơ hình ARIMA, ARCH/GARCH mở rộng tiếp theo bao gồm: thay đổi
khung thời gian và tính chất thời gian xem xét, ứng dụng mơ hình cho từng cổ phiếu riêng lẻ hoặc ngành cụ thể, kết hợp với các mơ hình khác như mơ hình dự báo nhân quả để điều chỉnh kết quả phân tích dự báo phù hợp với tình hình thực tế...
KẾT LUẬN
Y@Z
Chúng ta đã lần lượt tiếp cận những điểm cơ bản của việc ứng dụng mơ hình ARIMA, ARCH/GARCH trong phân tích dự báo giá & rủi ro cho thị trường cổ phiếu niêm yết Việt Nam. Kết quả ứng dụng cho thấy mơ hình ARIMA mơ phỏng khá tốt diễn biến hành vi của thị trường trong quá khứ nên nĩ cĩ cơ sở làm tốt chức năng của mình trong việc dự báo cho tương lai đặc biệt trong giai đoạn sideways hay giảm đều hiện nay. Với mơ hình ARCH/GARCH cho ta biết suất sinh lời của thị trường chứng khốn niêm yết Việt Nam cĩ đặc điểm khơng tương thích với rủi ro của thị trường. Mặc khác tình trạng bất cân xứng thơng tin của hai thị trường niêm yết Tp. Hồ Chí Minh và Hà Nội là khác nhau. Tin xấu tác động mạnh hơn đến thị trường niêm yết Hà Nội hơn là tin tốt trong khi thị trường niêm yết Tp. Hồ Chí Minh cĩ xu hướng cân xứng giữa tin tốt với tin xấu.
Tuy nhiên mơ hình ARIMA, ARCH/GARCH cĩ vẻ như chỉ phù hợp cho dự báo ngắn hạn vì tương lai luơn tiềm ẩn các cú sốc khơng thể biết trước trong khi các yếu tố tác
động đến thị trường lại khơng được nhận diện trong mơ hình. Mơ hình khơng cĩ ý