1.2.2.4 CMOS trong không gian và ứng dụng
Cảm biến CMOS đã được sử dụng trong không gian, có ứng dụng trong các đường bus vệ tinh, các thiết bị đo đạc như theo dõi ngôi sao và máy ảnh kiểm tra. CMOS là chưa có một tác động đáng kể trong khoa học trong khi CCD vẫn chiếm ưu thế. Các lợi thế chính của CMOS so với CCD trong không gian thiết là cấu trúc chắc chắn, điện năng thấp và độ cứng bức xạ. Những ảnh hưởng của bức xạ trong CMOS và cảm biến CCD giống nhau ở chỗ cả hai bị bức xạ ion hóa. Cảm biến CMOS chắc chắn sẽ đóng một vai trò ngày càng tăng trong không gian thiết bị đo đạc, nhưng ngày nay chúng có nhiều khả năng xuất hiện trong những ứng dụng có kích thước lớn, khối lượng hoặc năng lượng hạn chế, ứng dụng yêu cầu với phương thức hoạt động phức tạp như ngẫu nhiên truy cập pixel, hoặc trong những nhiệm vụ mà thiệt hại bức xạ sẽ ít hơn CCD.
Những CMOS nói một cách khác được sản xuất xử lý một cách truyền thống, cũng phương pháp xử lý sản xuất các bộ vi xử lý. Bởi vì quá trình sản xuất khác nhau nên những cảm biến CCD và CMOS cũng có một số vấn đề khác nhau:
Những cảm biến CCD, như đã đề cập ở trên được sản xuất với chất lượng cao để đạt được độ nhiễu thấp nhất. Những cảm biến CMOS được sản xuất bằng phương pháp truyền thống cho chất lượng hình ảnh thấp do bị ảnh hưởng nhiễu cao bởi vì mỗi pixel trong cảm biến CMOS có vài transistor do đó độ nhậy sáng của chip CMOS thấp hơn cảm biến hình ảnh CMOS tiêu thụ năng lượng thấp. Những cảm biến CCD tiêu thụ nhiều năng lượng trong quá trình xử lý, cảm biến CCD tiêu thụ điện gấp 100 lần so với cảm biến CMOS tương đương. Dựa trên những sự khác nhau đó mà có thể xem như bộ cảm biến CCD trong máy ảnh kỹ thuật số cho chất lượng hình ảnh cao với nhiều pixel với độ nhạy sáng cao. Những cảm biến dùng công nghệ CMOS tiêu thụ năng lượng thấp hơn, độ phân giải thấp hơn và độ nhạy sáng kém nhưng bên cạnh đó nó dùng được pin lâu hơn vì tiêu thụ năng lượng thấp. Ngày nay những máy ảnh kỹ thuật số dùng công nghệ CMOS đã được cải tiến và chất lượng gần đạt được so với CCD.
1.3. So sánh CCD và CMOS
Một cảm biến CMOS kết hợp bộ khuếch đại, bộ chuyển đổi ADC và mạch cho quá trình xử lý bổ sung, trong khi đó ở một máy ảnh với cảm biến CCD, nhiều chức năng xử lý tín hiệu được thực hiện ngoài cảm biến. Cảm biến CMOS có mức tiêu thụ điện năng thấp hơn so với cảm biến hình ảnh CCD, có nghĩa là nhiệt độ bên trong máy ảnh hay các thiết bị có thể được giữ thấp hơn. Các vấn đề về nhiệt với cảm biến CCD có thể được giải quyết bằng các nghiên cứu trong thời gian tới, song mặt khác, cảm biến CMOS có thể phải chịu nhiều nhiễu từ cấu trúc.
Một cảm biến CMOS cho phép 'windowing' và đa xem trực tuyến,điều mà không thể được thực hiện với một CCD cảm biến. Một cảm biến CCD thường có một điện áp chuyển đổi mỗi cảm biến, trong khi một bộ cảm biến CMOS có một trên mỗi pixel. Đầu đọc nhanh hơn từ một cảm biến CMOS làm cho nó dễ dàng hơn để sử dụng cho đa-megapixel trong máy ảnh. Tiến bộ công nghệ gần đây đã loại trừ sự khác biệt về độ nhạy sáng giữa một CCD và cảm biến CMOS với một mức giá nhất định.
Cảm biến CCD vẫn thường lựa chọn những ứng dụng trong đó chất lượng hình ảnh là những yêu cầu chính. CCD được cải thiện với hiệu suất lượng tử đạt 85% và 16 bit dải động.
Cảm biến CMOS có giá rẻ hơn nhiều, sản xuất số lượng lớn (hơn 90 %) trong điện thoại di động, đồ chơi, máy ảnh giá rẻ. Bảng 1.1 đã chỉ rõ sự tương quan về đặc điểm cũng như chất lượng của hai công nghệ CMOS và CCD.
Bảng 1.1. So sánh giữa CCD và CMOS Mô tả CCD CMOS Thành phần Cảm biến + Chip hỗ trợ quang học + Thành phần quang học Cảm biến + Chip hỗ trợ quang học
Tốc độ Trung bình đến nhanh Nhanh
Độ nhạy Cao Thấp
Nhiễu Thấp Trung bình
Độ phức tạp hệ thống Cao Thấp
Độ phức tạp cảm biến Thấp Cao
Đầu ra Tín hiệu tương tự Tín hiệu số
Tín hiệu điểm ảnh Điện tử Điện thế
Những lợi thế khác của bộ cảm biến CMOS là chúng tiêu thụ ít điện hơn và có thể kết hợp những mạch khác trên cùng chip. Những tính năng bổ sung của loại chip này có thể bao gồm bộ chuyển đổi tương tự - số, tính năng điều khiển camera, nén hình ảnh hay chống rung.
Tuy nhiên, những mạch bổ sung này sử dụng không gian bình thường được sử dụng cho thiết bị đo sáng. Điều này làm cho bộ cảm biến kém nhậy sáng hơn, tạo ra những bức ảnh chất lượng thấp hơn khi chụp ở trong nhà hoặc trong những điều kiện thiếu sáng khác.
Một CCD điển hình tiêu thụ 2 đến 5W, một chip CMOS thường tiêu thụ 20mW đến 50mW.
CMOS được phát triển nhanh chóng cũng cho các ứng dụng cao cấp: - Bộ cảm biến CMOS đã đạt độ phân giải 12Mpixel
- Thiết kế cải tiến rút ngắn khoảng cách chất lượng - Cải thiện “fill-factor”
1.4. Kết luận chương
Trong chương I đã trình bày một cách chi tiết về các loại cảm biến thông dụng hiện nay trên thế giới đó là cảm biến CCD và CMOS. Mỗi loại cảm biến này đều có những ưu nhược điểm khác nhau. Tuy nhiên trong khuôn khổ luận văn tác giả sẽ đi sâu nghiên cứu về camera CCD và cảm biến camera tốc độ cao ISIS ở chương sau.
CHƯƠNG II : THIẾT KẾ CAMERA CCD 2.1. Giới thiệu 2.1. Giới thiệu
CCD là một trong những công nghệ lâu đời nhất với chất lượng ảnh chụp vượt trội so với CMOS nhờ có dải tần nhạy sáng và kiểm soát nhiễu tốt hơn. Để biết được chi tiết hơn về thành phần cấu trúc hoạt động của một camera CCD, chương II sẽ phân tích thiết kế một camera CCD điển hình.
2.2. Cấu trúc camera CCD [10]
Hình 2.1. Sơ đồ khối camera CCD điển hình
Sơ đồ khối của camera CCD gồm các khối cơ bản : Chip CCD, bộ tiền khuếch đại, bộ tương quan lấy mẫu kép, bộ khuếch đại và điều khiển. Các tiến bộ trong công nghệ CCD (Charge Coupled Device) như tăng độ phân giải với chi phí sản xuất thấp hơn kích thích sự tăng trưởng của ngành công nghiệp điện tử hình ảnh. Tuy nhiên một số hạn chế điển hình của CCD vẫn không thay đổi, chẳng hạn như mức độ tín hiệu đầu ra rất thấp và các nhiễu vốn có. Hơn nữa độ phân giải tăng thường bằng cao hơn tốc độ đọc ra, mà lần lượt sẽ áp đặt các yêu cầu đối với các thiết bị điện tử sau này.
CCD là yếu tố trung tâm trong một hệ thống hình ảnh, khi thiết kế phải hiểu rõ các yêu cầu đặc biệt cho các tín hiệu của CCD để đạt được hiệu suất tối đa. Các tín hiệu đầu ra của CCD là một dòng liên tục của các điểm ảnh riêng biệt "phí tổn hao" và kết quả này dẫn đến dạng điển hình của mức điện áp DC có bậc. Tín hiệu ra này chứa điện áp định thiên DC khoảng vài volt. Tín hiệu sau đó được truyền qua một tụ điện để chặn điện áp DC trước khi đi vào bộ tiền khuếch đại. Để duy trì mối quan hệ cần thiết giữa các thông tin pixel và đường cơ sở, một cái kẹp hoặc DC-restore mạch thường nằm trong giai đoạn xử lý đầu tiên. Giai đoạn tiếp theo được dùng một mạch giảm nhiễu đặc trưng cho hệ thống CCD dựa trên bộ đôi tương quan (CDS). Sau đó là một tầng khuếch đại khác, có thể là một bộ khuếch đại điều chỉnh độ tăng ích tự động (AGC), hoặc tầng khuếch đại cố định với dịch chuyển điều chỉnh. Trước khi đi vào chuyển đổi A/D nó thường đi qua một bộ đệm hoặc mạch điều khiển được tối ưu hóa cho các loại hình chuyển đổi lựa chọn. Để có thể đạt được độ ổn định hơn nữa bằng cách có một bộ D/A chuyển đổi trong một vòng lặp điều khiển kỹ thuật số.
Để dễ tưởng tượng quy trình xử lý ảnh của CCD ta hình dung mỗi một điểm ảnh là một người cầm một xô nước. Khi ánh sáng tràn vào cũng giống như cơn mưa xuống vào mỗi người tùy theo độ dày đặc của cơn mưa (ánh sáng mạnh yếu thể hiện nên bức ảnh) sẽ hứng được một lượng nước khác nhau ở xô của mình. Sau khi số lượng nước của mỗi người đã được ghi nhớ, hàng ngoài cùng (hàng 1) sẽ đổ nước vào một cái rãnh (bộ đọc giá trị). Rãnh này sẽ ghi nhớ số lượng từng xô nước của hàng 1. Số lượng nước của hàng 2 được truyền đến cho hàng 1 rồi lại đổ vào rãnh, rãnh lại ghi nhớ số lượng nước của hàng 2. Rồi hàng 3 đổ vào hàng 2, hàng 4 đổ vào hàng 3, cứ thế truyền tay cho đến hết hàng cuối cùng là coi như thông tin về toàn bộ bức ảnh (màu sắc, đậm nhạt, sáng tối…) đã được truyền xong, tất cả mọi người lại sẵn sàng cho một cơn mưa khác tới (một kiểu ảnh mới).
Nhưng chính việc phải đọc thông tin theo từng hàng lần lượt một này khiến cho chip CCD có bất lợi đó là tốc độ xử lý hoàn thiện một bức ảnh khá chậm, ảnh ở một số vùng hoặc dễ bị thừa sáng (do nước từ xô người này bị bắn sang xô người khác), thiếu sáng (do xô người này truyền sang xô người kia không hết)… Để xử lý vấn đề này một bộ đọc ảnh có kích cỡ bằng mạng lưới các hạt sáng được bổ sung xen kẽ (cạnh hàng người nào cũng có rãnh để đổ nước) để làm tăng tốc độ xử lý ảnh mà không bị suy giảm chất lượng, do đó quá trình đọc ảnh chỉ qua một lần đổ dữ liệu. Nhưng sự cải thiện này đòi hỏi phải có thêm không gian trên chip. Mà để sản xuất chip CCD cần có những thiết bị phòng lab chuyên dụng khiến cho giá thành CCD đã đắt lại càng thêm đắt.
Ánh sáng được thu thập toàn bộ trên khung hình cùng một lúc sau đó ánh sáng sẽ được tắt để các photon đã thu được có thể được chuyển xuống các cột. Cuối cùng mỗi dòng dữ liệu được chuyển đến một thanh ghi ngang riêng biệt, các gói dữ liệu cho mỗi hàng được đọc ra tuần tự và cảm nhận bởi một chuyển đổi photon thành điện áp và đi tới phần khuếch đại. Khi chụp ảnh cửa trập mở ra ánh sáng qua ống kính sẽ được lưu lại lại bề mặt chip thông qua các điểm ảnh. Thông tin về số lượng ánh sáng lưu lại của mỗi điểm (thể hiện bằng độ khác nhau về điện áp) sẽ được chuyển lần lượt theo từng hàng ra ngoài bộ phận đọc giá trị (để đọc các giá trị khác
nhau của mỗi điểm ảnh). Sau đó các giá trị này sẽ đi qua bộ khuyếch đại tín hiệu, rồi đến bộ chuyển đổi tín hiệu tương tự sang tín hiệu số (A/D converter), rồi tới bộ xử lý để tái hiện lại hình ảnh đã chụp được.
Hình 2.3. Cấu hình mảng CCD
Các mảng CCD được cấu hình vào nhiều thanh ghi dịch chuyển thẳng đứng và thường là một thanh ghi dịch ngang, cả hai yêu cầu mẫu tạo xung nhịp khác nhau. Các dòng như sau: điểm ảnh chuyển đổi ánh sáng (photon đến) thành điện tử được lưu trữ như điện. Sau đó tính được truyền xuống thanh ghi thẳng đứng theo cách băng chuyền đến thanh ghi dịch chuyển ngang. Thanh ghi này thu thập mỗi lần một dòng và vận chuyển những điểm ảnh trong một cách nối tiếp với giai đoạn đầu ra trên chip. Trên chip đầu ra chuyển đổi tính vào điện áp, điện áp này sau đó được sẵn có ở đầu ra trong lập công thức xung nhịp CCD điển hình. Với CCD tiêu chuẩn, hầu hết các điểm ảnh có thể phát hiện ánh sáng. CCD cũng có chia cắt nhỏ lúc đầu và vào cuối mỗi đoạn đường đứng được che phủ nên do đó "về phương diện quang học mồ hóng". Điểm ảnh đó sẽ luôn có mức điện áp đại diện cho màu đen. Một số mạch điện ảnh sử dụng khi các điểm ảnh tham chiếu để điều chỉnh dịch chuyển tín hiệu.
Một số con số:
Tốc độ kết quả đọc được đường nằm ngang cho hệ thống lên tới 12 bit độ phân giải lên đến 10MHz. Đối với độ phân giải cao (16 bit) tốc độ là khoảng 1MHz. Kích thước điểm ảnh điển hình là: ~27µm2 cho mảng 512x512 hoặc ~12µm2 cho mảng 1024x1024.
Hình 2.4. Sơ đồ khái niệm của giai đoạn đầu ra bên trong phần tử CCD
Trên đây là sơ đồ khái niệm của giai đoạn đầu ra bên trong phần tử CCD. Giai đoạn này chịu trách nhiệm cho cái gọi là "phát hiện phí”. Như đã thảo luận trước đó, phí điện tử tạo ra được chuyển vào thanh ghi dịch ngang. Phí của mỗi điểm ảnh riêng biệt được điều khiển bởi bộ tạo nhịp ngang và được lưu trữ vào tụ (Cs). Một giá trị tiêu biểu cho một tụ điện như vậy là 0.1pF đến 0.5pF với V=Q/C, phí sẽ phát triển một điện áp trên tụ Cs, đại diện cho cường độ ánh sáng cho các điểm ảnh riêng biệt. Một bóng bán dẫn MOSFET cấu hình như một bộ theo nguồn đệm tụ từ nút đầu ra kết nối với điện trở tải RLOAD. Tại thời điểm này tín hiệu hình ảnh trở nên có sẵn tại VOUT cho tín hiệu tiếp tục điều chế.
Như đã chỉ ra trong hình trên, điện áp đầu ra là một loạt các điện áp bước DC. Một kỳ điểm ảnh bao gồm ba cấp độ khác nhau: (1) "thiết lập lại feedthrough", (2) "mức tham chiếu", (3) "mức độ điểm ảnh".
Một chuỗi readout bắt đầu với các thiết lập lại. Trường hợp FET-switch được đóng lại, thiết lập hướng tụ điện để điện áp tham chiếu ban đầu. Điện áp tham chiếu
có thể là tương đối cao lên đến +12V. Việc đóng cửa chuyển đổi gây ra feedthrough thiết lập lại, một kết quả của các khớp nối điện dung qua MOSFET. Sau khi phân rã này feedthrough tụ điện sẽ phản ánh mức độ điện áp tham chiếu (2). Một khi các tụ điện đã được thiết lập lại, việc chuyển đổi sẽ mở ra và pixel được chuyển giao cho các tụ điện, biến đổi điện áp của nó.
Một đặc điểm kỹ thuật quan trọng cho các yếu tố CCD là độ nhạy. Đây là một biện pháp của điện áp đầu ra có thể đạt được cho mỗi electron, SV = VOUT/e-. Với một tụ điện 0.1pF, điện áp đầu ra sẽ được -1.6µV mỗi electron. Thật không may, theo nguồn có mức tăng dưới 1 (~0,8).
2.2.2 Hạn chế hiệu năng hệ thống
Giới hạn dưới của dải động trong một hệ thống hình ảnh được thiết lập bởi tầng nhiễu. Các kỹ thuật khác nhau có sẵn để tối ưu hóa phạm vi hoạt động và tối ưu hóa cho phạm vi đầu vào của bộ chuyển đổi A/D, nhưng một sự hiểu biết thấu đáo về các nguồn nhiễu là rất quan trọng. Các nguồn nhiễu chính, bên cạnh kỹ thuật số feedthrough, cái gọi là nhiễu KT/C của chuyển đổi thiết lập lại FET gây ra bởi điện trở của nó. Các MOSFET cũng góp nhiễu là tạp nhiễu nhấp nháy (1/f) và một số nhiễu trắng (nhiệt). Ngoài ra mỗi điện trở là một nguồn của nhiệt/nhiễu trắng. Hạn chế khác được thiết lập bởi các nhiễu lượng tử hóa của bộ chuyển đổi A/D. Nhiễu lượng tử hóa rms được thể hiện bằng phương trình q/ 12, với q là kích thước bit hoặc trọng lượng LSB của bộ chuyển đổi. Chẳng hạn như bộ chuyển đổi 10 bit với vùng đầu vào hết cỡ của 2V có kích thước bit của 2.0V/1024 = 1.953mV. Do đó, nhiễu lượng tử hóa là 564µVrms. Giả sử một tụ điện có ý nghĩa 0.1pF giới hạn phát hiện sẽ là vào khoảng 350 electron do nhiễu lượng tử. Một cách rõ ràng để giảm bớt hạn chế này là sử dụng một chuyển đổi A/D với độ phân giải cao hơn ví dụ 12 bit.