Thuật ngữ Ý nghĩa Ghi chú
x ngày đầu Số x ngày đầu trong thời gian hiệu lực dự báo x = 1, 2, 3...
y ngày cuối Số y ngày cuối trong thời gian hiệu lực dự báo y = 1, 2, 3...
Những ngày giữa
Chỉ những ngày nằm giữa x ngày đầu và y
ngày cuối trong thời gian hiệu lực dự báo Thời kỳ đầu Chỉ thời đoạn từ ngày thứ nhất đến ngày thứ ba
trong thời hạn hiệu lực dự báo
Chỉ dùng cho dự báo thời tiết 9, 10, 11 ngày
Thời kỳ giữa Chỉ thời đoạn từ ngày thứ tư đến ngày thứ bảy trong thời hạn hiệu lực dự báo
Thời kỳ cuối Chỉ thời đoạn từ ngày thứ tám đến hết thời hạn hiệu lực dự báo
Có ngày có Chỉ một hoặc vài ngày khơng liên tục bất kỳ, không xác định được
Không quá 1/2 số ngày của thời đoạn dự báo Bảng 2.3: Quy định các thuật ngữ dự báo về không gian
Thuật ngữ Ý nghĩa Ghi chú
Nhiều nơi Hiện tượng hay yếu tố dự báo xảy ra trên toàn bộ hoặc trên 2/3 số trạm trong khu vực dự báo
Có mưa, có mưa ở nhiều nơi
Rải rác Hiện tượng hay yếu tố dự báo xảy ra trong phạm vi trên 1/3 đến nhỏ hơn hoặc bằng 2/3 số trạm của vùng dự báo Khơng Khơng có nơi nào xảy ra hiện tượng hay yếu tố dự báo
hoặc xảy ra nhỏ hơn 1/4 số trạm Không mưa
+ Quy định chỉ tiêu đánh giá dự báo
++ Quy định đánh giá về thời gian: Một hiện tượng thời tiết xảy ra, dự
báo được tính là đúng (+) nếu thời điểm thực tế xuất hiện hiện tượng đó khơng vượt quá 24h trước và sau thời điểm dự báo, ngoài ra là sai (-).
Một thời kỳ dự báo được tính là đúng (+) nếu ít nhất 2/3 số ngày dự báo trong thời kỳ đó được tính là đúng (+), ngồi ra là sai (-).
++ Quy định đánh giá về khơng gian: Độ chính xác dự báo các hiện tượng theo không gian được quy định theo bảng 4.
Bảng 2.4: Quy định đánh giá dự báo về không gian
Dự báo Số trạm thực tế quan trắc được hiện tượng (s)
S ≤1/4 1/4 < S ≤1/3 1/3 < S ≤1/2 1/2 < S ≤2/3 2/3 < S ≤3/4 S > 3/4 Không + - - - - - Vài nơi + + + - - - Có nơi Rải rác - - + + + - Nhiều nơi - - - + + +
- Đánh giá định lượng về lượng mưa trong thời kỳ dự báo
Bảng 2.5: Quy định đánh giá dự báo về lượng mưa (mm)
Thực tế R dự báo 0 ≤ 0,6 ≤ 5 ≤ 15 ≤ 30 ≤ 50 ≤ 80 ≤ 150 ≤ 300 > 300 < 10 + + + + - - - - - - 10 ≤ R < 30 - + + + + - - - - - 30 ≤ R < 50 - - - + + + + - - - 50 ≤ R < 100 - - - - + + + + - - 100 ≤ R < 250 - - - - - + + + + -
R > 250 Sai số cho phép ± 20% và xem xét hiện tượng TTNH
b. Đánh giá theo pha:
- Đánh giá sai số trung bình ME=1
n (Fi-Oi)
i=1
n
å (2.1)
Trong đó: Fi là trị số dự báo; Oi là giá trị thực đo; n là số lượng mẫu. Chỉ số ME chỉ ra sai số trung bình so với giá trị quan trắc, nhưng không phản ánh biên độ của sai số. Giá trị dương tức là trung bình giá trị dự báo lớn hơn giá trị quan trắc, giá trị âm tương ứng với việc dự báo thấp hơn giá trị quan trắc. Chỉ số ME có giá trị từ -∞ đến +∞, với 0 là giá trị “hồn hảo”. Tuy nhiên, đơi khi một dự báo sai lại nhận được giá trị ME = 0 khi trong đó có
những sai số triệt tiêu nhau, do vậy, không bao giờ người ta sử dụng chỉ số ME một mình.
- Đánh giá sai số quân phương
n i i O i F n MSE RMSE 1 1 2 (2.2)
Chỉ số này cho biết biên độ trung bình của sai số dự báo, nhưng khơng cho biết hướng của độ lệch. RMSE có thể được tính tốn trên bất kỳ hay tất cả các hướng theo không gian hoặc theo thời gian. RMSE bằng 0 chỉ khi có sự tương đồng tuyệt đối ở mọi nơi giữa dự báo và quan trắc, cịn khơng, chúng đều có giá trị lớn hơn 0.
- Xác suất xuất hiện (Probability of Detection (Hit Rate) (PoD, HR))
c a a HR PoD (2.3)
HR có giá trị dao động từ 0 - 1 với 1 đại diện cho một dự báo hoàn hảo. Vì nó chỉ dùng phương án quan trắc a và c và nó chỉ nhạy với Miss và False alarm. Do đó HR có thể được cải thiện bằng cách hệ thống hóa sự xuất hiện của phương án dự báo trên. HR là chưa hoàn chỉnh và cần được sử dụng kết hợp với một trong hai FAR (False Alarm Ratio) và FA (False alarm rate) dưới đây.
- Hệ số cảnh báo sai (False Alarm Ratio (FAR))
FAR= b
a+b (2.4)
FAR là tỷ số giữa tổng báo động giả (b) với tổng số các phương án dự báo (a+b). Phạm vi của nó dao động từ 0 tới 1 và giá trị tối ưu là 0. Nó khơng bao gồm c do đó sẽ khơng phải là nhạy với Miss. Người ta có thể cải thiện các FAR bởi việc hệ thống các phương án dự báo dưới hiếm thấy. Đó cũng là một điểm hạn chế và cần được sử dụng trong kết nới với HR phía trên.
- Đường chéo tần suất (Frequency Bias (B))
c a b a Bias (2.5)
Đường chéo tần suất chỉ được sử dụng để tính tổng biên của bảng ngẫu nhiên, và đó khơng phải là biện pháp kiểm tra đúng, vì nó khơng phù hợp với
dự báo và thực đo. Thay vào đó, nó sẽ so sánh tần suất xuất hiện của phương án dự báo và thực đo trong mẫu. Dự báo được cho là khách quan nếu như phương án được dự báo chính xác với cùng một tần suất mà nó được quan trắc, để đường chéo tần suất của một đại diện có giá trị cao nhất. Giá trị cao hơn 1 biểu thị dự báo trên (quá thường xuyên) và giá trị thấp hơn 1 biểu thị dự báo dưới (không đủ thường xuyên). Khi được kết nối với HR và FAR, đường chéo có thể được sử dụng để giải thích phương hướng dự báo liên quan đến tần suất của False alarm hoặc Miss.
- Chỉ số quyết định thành công (Threat Score (Critical success index) (TS, CSI))
CSI=TS= a
a+b+c (2.6)
Chỉ số quyết định thành công CSI hay TS thường được sử dụng như một tiêu chuẩn kiểm tra thực đo. CSI có giá trị dao động từ 0 - 1 với 1 là giá trị tối ưu. CSI nói lên mức độ trùng khớp giữa vùng mưa dự báo và vùng mưa thực đo. CSI hồn chỉnh hơn HR và FAR vì nó nhạy cảm với cả Miss và False alarm. Vì vậy, nó khó khăn hơn để áp dụng với một hệ thống phương hướng dự báo được đảm bảo để nâng cao trị số.
- Độ chính xác(Percentage Correct - PC)
(2.7)
Chỉ số này cho biết tỷ lệ phần trăm dự báo đúng trên tổng số dự báo; Giá trị “hoàn hảo” là 1.
Để đảm bảo chất lượng số liệu quan trắc trước khi đưa vào sử dụng số liệu mưa được so sánh với số liệu từ Aphrodite thông qua nguyên tắc 4 điểm lưới Aphrodite xung quanh điểm trạm. Nếu lượng mưa tại trạm chênh lệch quá lớn so với lượng mưa từ 4 điểm trên Aphrodite thì số liệu này sẽ bị loại bỏ. Ngoài ra nếu lượng mưa vượt quá giá trị khí hậu 5σ, quan trắc tại trạm sẽ được kiểm tra với các thông tin lịch sử đảm bảo mưa lớn thực sự diễn ra hay không.
Do bản chất của phương pháp MLR là tìm ra một phương trình thống kê phù hợp nhất dựa trên các nhân tố dự báo và yếu tố dự báo nên vẫn có những trường hợp “quá khớp” xảy ra. Tức là các giá trị xác xuất dự báo vẫn
có thể lớn hơn 1 hoặc nhỏ hơn 0. Để khắc phục trường hợp này ta sử dụng phương pháp cắt ghép, các giá trị nhỏ hơn 0 sẽ được gán bằng 0; các giá trị lớn hơn 1 sẽ được gán bằng 1.
Mặt khác, do sự khác nhau về thứ nguyên và bậc đại lượng nên trước khi xây dựng phương trình thống kê, các nhân tố dự báo cần được chuẩn hóa về cùng bậc đại lượng và triệt tiêu thứ ngun. Cơng thức chuẩn hóa được đưa ra theo (8). k k k k sd x x xˆ (2.8)
ở đây xˆklà giá trị chuẩn hóa của nhân tố dự báo thứ xk, xkvà sdktương ứng là giá trị trung bình và độ lệch chuẩn của nhân tố xk xác định từ tập số liệu phụ thuộc. Sau khi được chuẩn hóa, các nhân tố mới xˆklà vơ thứ nguyên và phần lớn có giá trị tập trung trong khoảng từ -3 cho đến +3. Đối với các biến
luôn dương (như lượng mưa, độ ẩm, … thì các giá trị này sẽ nằm trong khoảng [0,3].
Với một tập khoảng 600 nhân tố dự báo cho mỗi điểm trạm, khối lượng tính tốn sẽ rất lớn và cũng khơng cần thiết khi các biến có quan hệ tương hỗ nhất định. Do đó, một quá trình tuyển chọn nhân tố cần được thực hiện nhằm giảm thiểu khối lượng tính tốn trong khi vẫn đảm bảo những thơng tin quan trọng thu được từ các biến dự báo. Với bài toán PQPF, đề tài sẽ thực hiện tuyển chọn theo phương pháp tuyển chọn từng bước tiến với nguyên lý tương đương như phương pháp hồi quy từng bước tiến. Tuy nhiên, thay vì hệ số tương quan như phương pháp hồi quy từng bước, chỉ tiêu tuyển chọn được sử dụng là chỉ số kỹ năng Brier (BSS).
Chỉ số Brier được sử dụng trong đánh giá dự báo xác suất sự kiện nhị phân có hay khơng. Dự báo sẽ được đưa ra dưới dạng xác suất y (0≤y≤1) trong khi quan trắc o chỉ bao gồm hai giá trị 0 (hiện tượng không xuất hiện) và 1 (hiện tượng xuất hiện). Chỉ số Brier được tính như sau:
n 1 k 2 k k o ) y ( N 1 BS (2.9)
với chỉ số k chạy trên tập n dự báo được đưa vào đánh giá. Chỉ số BS sẽ có giá trị từ 0 đến 1, giá trị 0 tương ứng với dự báo tất định hoàn hảo.
Để một dự báo xác suất có kỹ năng ít nhất dự báo này phải dự báo tốt hơn so với dự báo khí hậu. Do đó, người ta ít khi xem xét chỉ số Brier mà thường sử dụng chỉ số kỹ năng Brier.
ref ref perf ref BS BS 1 BS BS BS BS BSS (2.10)
với BSperf là chỉ số Brier của dự báo hoàn hảo (BSperf = 0), BSref là chỉ số Brier của dự báo đối chứng mà thông thường là dự báo khí hậu. Ngược với BS, BSS có giá trị 1 tương ứng với dự báo hồn hảo, nhỏ hơn hoặc bằng khơng có nghĩa dự báo có kỹ năng dự báo khơng tốt hơn so với dự báo đối chứng.
Trong quá trình tuyển chọn nhân tố, nếu nhân tố đưa vào trong phương trình dự báo có chỉ số BSS khơng lớn hơn chỉ số BSS của phương trình chứa các nhân tố trước đó một ngưỡng cho trước thì nhân tố đó khơng được tuyển chọn. Do đó, chỉ số BSS rất quan trọng trong quá trình tuyển chọn nhân tố đối với bài tốn PQPF.
Sau khi xây dựng được phương trình dự báo cho PQPF, các giá trị định lượng mưa QPF được nội suy trực tiếp trên hàm phân bố xác suất định lượng mưa. Với các ngưỡng mưa sắp xếp theo giá trị giảm dần ta sẽ có một hàm phân bố tích lũy có giá trị 0 khi ngưỡng mưa lớn nhất (trong nghiên cứu này chúng tôi chọn giá trị 100mm) và nhận giá trị 1 khi ngưỡng mưa bằng 0. Để đảm bảo hàm phân bố tăng dần khi ngưỡng mưa giảm dần, các giá trị xác suất sẽ được điều chỉnh sao cho sự kiện ít xuất hiện sẽ có xác suất thấp hơn so với sự kiện hay xảy ra. Ví dụ, xác suất dự báo mưa lớn hơn 10mm phải nhỏ hơn xác suất xảy ra mưa 5mm. Từ hàm phân bố PQPF ở trên, lượng mưa dự báo được tính bằng lượng mưa ứng với xác suất tích lũy 50%. Giá trị này được nội suy theo phương pháp hàm spline bậc ba từ các ngưỡng mưa đã chọn.
Để đánh giá, đề tài lựa chọn bảng phân loại (Contigency table) để biết tần suất xảy ra hiện tượng dự báo.
2.2.2 Đánh giá sai số dự báo thủy văn:
Khi dự báo người thường cố gắng chọn phương án dự báo nào có chỉ số sai số quân phương S hay chỉ số sai số tuyệt đối A nhỏ nhất.
S = n 1 n 1 i i i 2 ) Q Q ( (2.11)
Với: Qi
là giá trị dự báo; Qilà giá trị thực đo tại thời điểm thứ i Người ta cũng hay dùng chỉ số Nash- Sutclifte:
N = o 1 o S S S 100% (2.12) Với: S0 = 2 i n 1 i i Q ) (Q (2.13) S1 = n 1 i i i 2 ) Q Q ( (2.14) Những chỉ số này càng gần 100% càng tốt.
Để đánh giá phương án dự báo và đánh giá sai số dự báo, cần xác định sai số cho phép của yếu tố dự báo. Trong dự báo thủy văn sai số cho phép được xác định theo quy định tạo thông tư số 42/2017/TT- BTNMT ngày 23/10/2017 của Bộ Tài nguyên và Môi trường quy định kỹ thật đánh giá chất lượng dự báo, cảnh báo thủy văn.
Phương án được coi là tốt khi mức đảm bảo phương án lớn hơn 80% và lớn hơn mức đảm bảo thiên nhiên. Bất kỳ phương án dự báo nào được xem là hợp lý và có thể dùng được trong thực tiễn đều phải có mức đảm bảo phương án lớn hơn mức đảm bảo thiên nhiên.
Bảng 2.6: Tiêu chuẩn đánh giá sai số phương án
Mức đảm bảo thiên nhiên % 60 70 80 88 96 Mức đảm bảo phương án % 80 85 92 95 100
2.3 Cơ sở dữ liệu
2.3.1 Tình hình tài liệu khí tượng, thủy văn thực đo
a. Khí tượng:
Việc nghiên cứu khí hậu trên lưu vực sơng Sê San được bắt đầu từ năm 1917 bằng việc thành lập trạm đo khí tượng Kon Tum, sau đó là các trạm: Khí tượng Plei Ku (1933), khí tượng Đăk Tơ (1976), Khí tượng Yaly (1994). Tuy nhiên các trạm Kon Tum và Plei Ku chỉ có chuỗi đo số liệu liên tục từ năm 1976 đến nay; trạm Yaly có chuỗi đo số liệu liên tục từ năm 1994 đến nay
Trên lưu vực có 07 trạm đo mưa nhân dân có thời gian đo liên tục khác nhau gồm: Đăk Glei, Sa Thầy, Đăk Đoa, Biển Hồ, Kon PLong, Măng Cành.
Ngồi các trạm đo khí tượng và đo mưa nhân dân nói trên, hiện nay trong lưu vực cịn có các trạm đo mưa tự động đã đi vào hoạt động từ năm 2014. Các trạm đo mưa này cùng với các trạm khí tượng do Tổng cục KTTV quản lý, chất lượng đảm bảo và có thời gian liên tục.
b. Thủy văn:
Trên nhánh sơng Đăk Bla có trạm Kon Tum bắt đầu đo mực nước, lưu lượng nước từ tháng 7/1959. Từ năm 1977 đến nay, trạm còn quan trắc các yếu như nhiệt độ nước, hoá nước, phù sa và trạm thủy văn cấp I. Năm 1994 có thêm trạm Kon Plong cũng là trạm thủy văn cấp I.
Trên nhánh sơng Pơ Kơ có trạm thủy văn Trung Nghĩa được thành lập từ tháng 7/1959 đo mực nước và lưu lượng nước. Đến năm 1990 trạm đo thêm nhiệt độ nước và phù sa. Năm 1998 trạm Trung Nghĩa thuộc lòng hồ Ialy nên ngừng hoạt động. Năm 1994 có thêm trạm Đăk Mốt, là trạm thủy văn cấp I.
Trên dịng chính sơng Sê San có các trạm trạm thủy văn dùng riêng như Sa Bình, đo mực nước, lưu lượng từ tháng 4/1982 đến 12/1991; trạm Ialy đo mực nước, lưu lượng ở thượng lưu thác Ialy từ năm 1959 - 1963 và từ tháng 3/1989 đến 1992.
Trên sông Đăk Tờ Kan ở thượng nguồn sơng Sê San có trạm thủy văn Đăk Tô đo mực nước từ năm 1977 đến nay, năm 1978 và 1981 trạm có đo lưu lượng nước.
Để thống nhất chuỗi số liệu phục vụ tính tốn xây dựng phương án dự