PHẢN ỨNG AXIT-BAZƠ

Một phần của tài liệu BÀI GIẢNG hóa học đất đh9 (Trang 90 - 99)

3.6.1 .Sự trao đổi cation

4.3. PHẢN ỨNG AXIT-BAZƠ

Theo Arrhennius (1880-1890) cho rằng axit là hợp chất chứa hydrogen. Trong dung dịch, axit tao ra ion hydrogen. Bazơ là hợp chất tạo ra ion hydroxyl trong dung dịch. Khái niệm này có hạn chế trong giải thích nhiều trường hợp. Ví dụ, NH3 thực tế là bazơ, nhưng chất này không có nhóm OH. Ví dụ khác, các hợp chất hữu cơ có vai trò như bazơ. Theo Bronsted-Lowry (1923) cho rằng axit là hợp chất có khả năng nhường một proton. Ngược lại, bất cứ chất nào có khả năng nhận một proton thì gọi là bazơ.

Xác định chất cho và nhận proton trong phản ứng sau:

88

Theo Lewis (1923) khảng định axit là hợp chất nhận cặp điện tử. Bazơ là hợp chất cho cặp điện tử

-Trong nghiên cứu độ chua của đất, ta nên áp dụng cả 3 loại khái niệm trên. - Khi nghiên cứu điều kiện đất nên sử dụng khái niêm Arrhenius và Bronsted- Lowry.

- Khi nghiên cứu phản ứng tạo phức trong dung dịch đất. Khái niệm của Lewis sẽ phù hợp hơn.

pH được định nghĩa như âm logarithm của nồng độ ion hydrogen. Định nghĩa được đưa ra bởi nhà hóa sinh học Soren Peter Lauritz.

pH = - log [ H+]

Một số phản ứng chua (tạo axit)

(1)Khoáng hóa chất hữu cơ tạo axit

(2) Phản ứng của các hợp chất của N, S, P

89

Ca(H2PO4)2 – CaHPO4 + H3PO4 (3) Phản ứng tạo axit trên khí quyển

Ví dụ: Phản ứng tạo axit trên khí quyển và mưa axit

Các loại SO2, NO được thải vào khí quyển từ hoạt động của con người. Các khí này tạo thành axit và quay lại đất qua mưa.

2SO2 + O2 = 2SO3

SO3 + H2O = H2SO4

NO + O2 = 2NO2

2NO2 + H2O = HNO3 + HNO2

(4) Phản ứng tạo axit do hoạt động rễ cây

Ví dụ 1: Sau quá trình dị hóa (biến đổi các hợp chất hữu cơ sơ cấp thành các chất hữu cơ phục vụ nhu cầu sống của tế bào), các tế bào rễ cây giải phóng khí CO2, khí CO2 hòa tan trong nước tạo thành axit H2CO3.

CO2 + H2O = H2CO3 (5) Phản ứng phân ly H2O

H2O = H+ + OH-

(6) Phản ứng hòa tan CO2 vào nước

Tạo thành axit H2CO3. Nước biển, sông, hồ hòa tan lượng lớn CO2 từ khí quyển, lượng axit tạo thành trong sông, ngòi lại chảy vào đất thông qua hệ thống tưới tiêu. (7) Phản ứng của các hợp chất nhôm

- Nhôm trong đất thường có các phản ứng sinh H+ tùy theo điều kiện pH môi trường. - Các phản ứng chính của nhôm tạo H+ như sau:

(8) Phản ứng phong hóa khoáng vật Ví dụ 1: Phản ứng oxy hóa pyrit (FeS2)

2FeS2 + 7H2O + 7 1/2 O2 = 4SO2-2 + 8H+ + 2Fe(OH)3

90

Độ chua của đất xuất hiện ở các dạng khác nhau. Hiện nay người ta chia độ chua thành 2 dạng: độ chua hoạt tính và độ chua tiềm tàng. Độ chua tiềm tàng bao gồm độ chua trao đổi và độ chua thuỷ phân.

Độ chua hoạt tính là độ chua của dung dịch đất được gây ra bởi các thành phần hoà tan trong đó.

+ Độ chua của dung dịch đất được gây ra bởi sự có mặt của các axit hữu cơ tự do, hoặc các hợp chất hữu cơ khác có chứa các nhóm chức có tính axit, hoặc các axit vô cơ tự do (chủ yếu là axit cacbonic) cũng như các thành phần khác có đặc tính axit (chủ yếu là các ion Al và Fe, đặc tính axit của chúng có thể so sánh với đặc tính axit của axit cacbonic và axit axetic).

Theo kết quả nghiên cứu của I. N. Xkrưnhikova, trong dung dịch đất podzol đồng cỏ chua có chứa: các axit hữu cơ tự do không bay hơi, muối của các bazơ mạnh và các axit yếu, CO2 tự do và muối của axit cacbonic, muối amôn của các axit hữu cơ yếu.

Sự kết hợp của các thành phần này trong dung dịch đất tạo nên giá trị pH dao động trong phạm vi 4,2 – 6,8. Hàm lượng của chất hữu cơ trong dung dịch đất dao động từ 0 đến 2000-3000 mg/l, khi ở các tầng trên của đất có hàm lượng chất hữu cơ trong dung dịch đất cao nhất thì giá trị pH cũng thấp nhất

Sự đóng góp của các thành phần khác nhau vào sự hình thành độ chua hoạt tính không giống nhau phụ thuộc vào mức độ thể hiện các đặc tính axit (các hằng số axit) và hàm lượng của mỗi thành phần trong dung dịch.

Trong số các chất quan trọng gây ra độ chua hoạt tính có axit cacbonic. Đây là axit khá mạnh với pKa = 3,3 và chỉ nhờ nó cũng có thể hình thành phản ứng chua của dung dịch đất.

Nhiều thành phần khác sau khi làm thay đổi đồng thời tính đệm axit – bazơ của đất cũng có ảnh hưởng đến giá trị pH của dung dịch đất. Hệ thống CO2 – CaCO3 – H2O là một ví dụ về tác dụng tương hỗ rất mạnh giữa các thành phần khác nhau. Huyền phù CaCO3 trong nước sạch có pH = 9,6 do phản ứng:

CaCO3 + H2O ⇌ Ca2+ + HCO3 - + OH-

Khi cho huyền phù này cân bằng với không khí khí quyển thì pH sẽ giảm xuống còn 8,4; còn khi hàm lượng CO2 bằng 10% (không khí đất) giá trị pH của dung dịch cân bằng giảm xuống chỉ còn 6,7.

Các axit hữu cơ và muối của chúng có mặt thường xuyên trong dung dịch đất có ảnh hưởng đáng kể đến độ chua hoạt tính. Để so sánh ảnh hưởng của chúng với ảnh hưởng của axit cacbonic đến độ chua của đất người ta thường dựa vào giá trị hằng số ion hoá. Ví dụ đối với axit axetic CH3COOH hằng số ion hoá

91

ở 25oC bằng 1,74 x 10-5 hoặc pKa = 4,75, thì đối với axit tartric HOOCCH(OH)CH(OH)COOH giá trị K1 = 1,3 x 10-3, axit xinamic C6H5CH = CHCOOH giá trị K = 3,7 x 10-5, axit butiric C3H7COOH giá trị K = 1,5 x 10-5, axit formic HCOOH giá trị K = 1,8 x 10-4,… Nếu các axit hữu cơ có ít trong dung dịch đất, thì khí CO2 và axit cacbonic đóng vai trò chủ yếu trong sự hình thành độ chua hoạt tính của đất. + Trong thực tế ít khi người ta đo pH của dung dịch đất mà thường đo pH của dịch chiết đất hoặc huyền phù nước của đất. Hội nghị quốc tế về thổ nhưỡng lần thứ 2 đã quyết định dịch chiết nước hoặc huyền phù nước của đất để đo pH được chuẩn bị khi tỷ lệ đất:nước bằng 1:2,5. Đối với đất than bùn hoặc than bùn tỷ lệ này bằng 1:25. + Mức độ chua của dung dịch đất, dịch chiết và huyền phù đất được đánh giá dựa vào giá trị pH, còn số lượng chua được đánh giá bằng hàm lượng các chất có đặc tính axit được chuẩn độ bằng kiềm. + Thế năng vôi: Giá trị pH của dịch chiết bằng nước hoàn toàn không trùng với giá trị pH của dung dịch đất. Nguyên nhân của hiện tượng này do sự pha loãng dung dịch đất khi chuẩn bị dịch chiết và do ảnh hưởng của pha rắn. Sự pha loãng dung dịch đất khi chuẩn bị dịch chiết làm cho mức độ phân ly của các cation của phức hệ hấp phụ đất tăng lên, mức độ phân ly của các axit và bazơ yếu cũng tăng lên dẫn đến sự hoà tan bổ sung pha rắn của đất, nhưng đồng thời nồng độ của những chất mà hàm lượng của chúng trong dung dịch đất không bị kiểm soát bởi sự dư của chính những chất này trong pha rắn lại bị giảm xuống

Độ chua tiềm tàng xuất hiện do kết quả tương tác đất với dung dịch muối trung tính hoặc muối kiềm. Độ chua tiềm tàng có ảnh hưởng đến độ chua hoạt tính, trong đa số trường hợp, độ chua tiềm tàng của đất càng lớn thì độ chua hoạt tính càng cao. Người ta chia độ chua tiềm tàng thành 2 loại: độ chua trao đổi và độ chua thuỷ phân.

+ Độ chua trao đổi: Độ chua trao đổi được xác định bằng cách chiết các ion H+ và Al3+ từ phức hệ hấp phụ đất bằng dung dịch muối trung tính. Người ta thường dùng dung dịch KCl 1N

Mức độ chua được đánh giá theo giá trị pH của dịch chiết bằng muối (KCl 1N) hoặc dung dịch huyền phù. Để xác định số lượng chua của dịch chiết bằng muối (không phải của huyền phù) người ta chuẩn độ bằng dung dịch kiềm:

92

Ion Al3+ được chiết từ phức hệ hấp phụ đất không chỉ ảnh hưởng đến số lượng chua mà còn ảnh hượng đến mức độ chua, vì trong dung dịch nước nó tạo thành Al(OH)3, Al(OH)2+, Al(OH)2 +. Phần lớn phản ứng diễn ra theo phương trình:

+ Độ chua thủy phân: Người ta xác định độ chua thuỷ phân bằng cách tác động đất với với dung dịch muối kiềm thuỷ phân, thường sử dụng dung dịch muối CH3COONa 1N. Phản ứng cũng diễn ra tương tự như phản ứng đã được nghiên cứu ở trên

nhưng do tác động của axetat natri giá trị của độ chua thường cao hơn đáng kể so với tác động của muối KCl. Nhiều tác giả cho rằng độ chua thuỷ phân cao có giá trị cao hơn độ chua trao đổi do pH của dung dịch cân bằng có giá trị cao hơn. Vì dung dịch CH3COONa trước khi phân tích có pH bằng 8,2, trong khi đó dung dịch KCl khi xác định độ chua trao đổi có pH chỉ từ 5,6 đến 6,0, mặc dù khi chuẩn độ dung dịch chiết trong cả 2 trường hợp đều chuẩn độ đến pH bằng 8,2 (khi này phenolphtalein bắt đầu chuyển màu. Để xem có đúng môi trường kiềm của dung dịch CH3COONa khi xác định độ chua thuỷ phân là nguyên nhân làm cho độ chua thuỷ phân có giá trị cao hơn độ chua trao đổi không, người ta đã thay đổi pH của dung dich KCl khi xác định độ chua trao đổi từ 5,1 đến 7,6. Kết quả là sự thay đổi của pH của dung dịch KCl không làm thay đổi mức độ chua của dịch chiết (độ chua trao đổi). Như vậy môi trường kiềm của dung dịch muối tác động vào đất hoàn toàn không phải là nguyên nhân làm cho độ chua thuỷ phân có giá trị cao hơn độ chua trao đổi.

Đất đều có khả năng giữ các các đặc tính hoá học khác nhau ở mức độ ổn định nhất định hoặc chống lại những thay đổi dưới tác động của các chất hoá học trong điều kiện tự nhiên hoặc phòng thí nghiệm. Đó là đặc điểm chung của tính đệm hoá học của đất, tính đệm axit-bazơ là một trường hợp riêng của tính đệm hoá học của đất.

Tính đệm axit-bazơ của đất là khả năng các pha lỏng và pha rắn của đất có thể chống lại sự thay đổi pH khi tương tác đất với axit hoặc kiềm hoặc khi pha loãng huyền phù đất. Đặc điểm của hệ thống đệm chứa axit (hoặc bazơ) yếu và muối của nó có thể được thể hiện bằng phương trình Genderson-Hasellbah

pH = pKa + lg , hoặc pOH = pKb + lg

trong đó Ca : nồng độ (hoạt độ) của axit yếu trong dung dịch đệm, Ka : hằng số phân ly của nó, Cs : nồng độ (hoạt độ) của muối của axit này trong cùng dung dịch đệm. Nếu hệ đệm là bazơ yếu và muối của nó thì trị số pOH = -lgaOH- được tính theo phương trình tương tự nhưng thay thế Ca bằng Cb là nồng độ (hoạt độ) của bazơ và hằng số phân ly của nó Kb.

93

Các hệ thống đệm có khả năng giữ pH ở mức độ ổn định tương đối; thêm vào đó một lượng nhất định axit hoặc kiềm cũng ít làm thay đổi pH. Điều này có thể được giải thích như sau: khi thêm axit mạnh vào hỗn hợp đệm axetat, các proton được liên kết trong phân tử axit axetic:

và hoạt độ của ion hydro ít bị thay đổi.

Tính đệm cao xuất hiện trong trường hợp khi nồng độ của các thành phần của dung dịch đệm cao hơn đáng kể lượng các axit hoặc kiềm mạnh đưa vào dung dịch và pH của dung dịch đệm xấp xỉ pKa , hay nói một cáhc khác tính đệm cực đại khi tỷ số Cs :Ca = 1, khi đó:

pH = pKa + lg = pKa + lg1 = pKa

Người ta gọi số lượng axit mạnh (hoặc kiềm) cần phải bổ sung vào hệ đệm để làm thay đổi pH một đơn vị là dung tích đệm. Độ lớn của dung tích đệm được biểu thị bằng đương lượng gam.

Phương trình Genderson-Hasellbah có thể được sử dụng cho pha rắn của đất. Ở các đất chua, các axit yếu tồn tại trong dung dịch đất (axit hữu cơ yếu, H2CO3) và trong các pha rắn. Trong các pha rắn đó là các nhóm chức axit như nhóm cacboxyl – COOH của hợp chất mùn, cũng như các ion H+, Al3+ trên phức hệ hấp phụ của đất. Có thể mô tả phản ứng trung hoà của pha rắn như sau:

trong đó Đất]H+ biểu thị cho tất cả các thành phần axit của đất.

Số lượng muối được tạo thành (giả định Đất]Na+) có thể biểu thị bằng mol (Cs ); nếu tổng số thành phần axit của đất bằng 1 và giá trị Cs bằng một phần của đơn vị, ký hiệu là a thì số lượng của thành phần axit còn lại không phản ứng sẽ là 1 - a. Khi đó phương trình Genderson-Hasellbah đối với đất có thể viết dưới dạng:

pH = pKa + lg .

Trong điều kiện tự nhiên, tính đệm không chỉ phụ thuộc vào các pha rắn của đất mà còn phụ thuộc vào số lượng sinh vật đất, cường độ tăng hoặc giảm của độ ẩm thường xuyên làm thay đổi cân bằng hoá học đất.

Tính đệm trong điều kiện như vậy có tính chất động thái và đặc trưng cho khả năng của đất không chỉ chống lại sự thay đổi của pH khi thêm axit hoặc kiềm, mà còn có khả năng khôi phục giá trị pH trước đó.

Tính đệm axit bazơ là chỉ tiêu quan trọng để tính liều lượng vôi khi bón vôi và đánh giá tính chống chịu của đất đối với tác động của mưa axit. Tính đệm giữ cho pH đất ổn định, thuận lợi cho sinh trưởng, phát triển của cây trồng và vi sinh vật đất.

94

Vì vậy độ chua gây ra rất nhiều tác hại đối với đất và cây trồng. Nó làm thay đổi mức độ dễ tiêu của của các nguyên tố dinh dưỡng (đa lượng và vi lượng) đối với cây. Ví dụ mức độ dễ tiêu của phốt pho đạt cực đại khi pH = 6,5. Trong môi trường chua hơn cũng như trong môi trường kiềm nó giảm xuống. Chỉ ở các đất có phản ứng kiềm mạnh (pH ³ 9) thì độ hoà tan của các photphat lại tăng lên. Trong đất chua, độ hoà tan của các hợp chất của Fe, B, Zn, Cu tăng lên, sự thừa của các nguyên tố này có thể gây độc cho cây. Ngược lại nồng độ của Mo dễ tiêu giảm xuống khi đất chua không lợi cho cây.

+ Làm thay đổi các tính chất vật lý của đất. Khoảng pH thích hợp phụ thuộc không chỉ vào độ hoà tan của các thành phần của đất mà còn phụ thuộc vào đặc điểm sinh lý của cây trồng. Đối với một số cây trồng pH tối thích nằm trong khoảng 4,0 – 5,0; đối với một số cây trồng khác pH tối thích nằm trong khoảng 7,0 – 8,0. Sự mẫn cảm của cây đối với phản ứng môi trường phụ thuộc vào các điều kiện dinh dưỡng, vì thế các khoảng pH tối thích đối với cây được đưa ra bởi các tác giả khác nhau có thể không giống nhau.

Yêu cầu khác nhau của cây trồng với phản ứng dung dịch đất không cho phép tính khoảng pH tối thích duy nhất nào đấy cho tất cả các loại đất và tất cả các loại cây trồng. Thực tế không thể điều chỉnh pH đất phù hợp cho từng loại cây trồng. Vì vậy người ta phải chọn khoảng pH gần với yêu cầu của cây để giúp cây có khả năng huy động tốt nhất dinh dưỡng từ đất.

Để làm giảm độ chua đất người ta sử dụng những nguyên liệu cải tạo khác nhau; thường sử dụng nhất là các đá trầm tích có chứa canxit (CaCO3), dolomit [CaMg(CO3)2], đá vôi bị dolomit hoá, đá trầm tích sét vôi chứa 50 – 70% cacbonat. Ngoài ra người ta còn sử dụng tuf vôi, các phế liệu có chứa Ca...

Trên quan điểm hóa học caxi cacbonat là nguyên liệu tốt nhất để làm giảm độ chua đất. Khi bón vôi vào đất chua phản ứng sẽ xảy ra như sau:

Một phần của tài liệu BÀI GIẢNG hóa học đất đh9 (Trang 90 - 99)

Tải bản đầy đủ (PDF)

(102 trang)