Khoáng vật nguyên sinh

Một phần của tài liệu BÀI GIẢNG hóa học đất đh9 (Trang 26 - 29)

3. NHIỆM VỤ CỦA HÓA HỌC ĐẤT

1.3. THÀNH PHẦN KHOÁNG VẬT ĐẤT

1.3.3. Khoáng vật nguyên sinh

Các silicát nguyên sinh xuất hiện trong các loại đất do sự phá huỷ vật lý của các đá mẹ. Chúng được tìm thấy chủ yếu trong các nhóm hạt cát và limon trừ những loại đất ở giai đoạn đầu đến giai đoạn giữa của chuỗi phong hoá Jackson-Sherman, ở đó chúng cũng tồn tại trong nhóm hạt sét. Sự phong hoá hoá học các silicat nguyên sinh làm tăng thêm độ phì nhiêu tự nhiên và hàm lượng các chất điện ly của đất. Nằm trong số các sản phẩm phân huỷ chính của các khoáng vật này là các chất tan Na+, K+, Ca2+, Mg2+, Mn2+ và Fe2+ trong dung dịch đất. Các cation kim loại Co2+, Cu2+ và Zn2+ là những nguyên tố vết trong các silicát nguyên sinh và được giải phóng ra dung dịch đất do phong hoá. Tất cả các dạng cation tự do dễ tan này đều rất dễ tiêu đối với sinh vật và trừ Na+ chúng đều là các chất dinh dưỡng cần thiết cho cây. Các cation Na+, Ca2+, Mg2+ được giải phóng nhờ sự phong

24

hoá các silicát nguyên sinh cũng cung cấp một lượng lớn cho nồng độ chất điện ly trong dung dịch đất vùng khô hạn. Thường nồng độ của các cation hoá trị 2 do các silicát nguyên sinh cung cấp cao hơn nồng độ Na+, vì vậy mức độ nguy hại do natri của nước tưới thấm qua các đất này giảm xuống. Tên và công thức hoá học của các khoáng vật silicát nguyên sinh quan trọng đối với đất được liệt kê ở bảng 2.2. Nhân cơ bản trong cấu trúc nguyên tử của các khoáng vật này là khối tứ diện oxít silíc SiO4 4-. Khối tứ diện oxít silic có thể là những đơn vị riêng biệt trong các mạch đơn hay mạch kép liên kết với nhau bằng các góc được dùng chung (qui tắc Pauling 2 và 3), trong các phiến (hình 2.2) hoặc trong các khung ba chiều. Mỗi cách tồn tại định rõ một lớp của các silicát nguyên sinh (hình 2.3) Olivin bao gồm các khối tứ diện oxít silíc riêng rẽ được giữ lại với nhau bởi các cation kim loại hoá trị 2 như Ca2+, Mg2+, Fe2+ và Mn2+ trong phối trí bát diện (hình 2.1). Dung dịch rắn (solid solution) xảy ra với các khoáng vật fosterit và fayalit (bảng 2.2) để tạo ra một loạt các hỗn hợp với những tên đặc trưng như crysolit có chứa 10 - 30% mol fayalit. Olivin có tỷ lệ mol Si/O nhỏ nhất trong số các silicát nguyên sinh, vì vậy chúng có số lượng cộng hoá trị trong các liên kết hoá học nhỏ nhất. Quá trình phong hoá olivin trong đất khá nhanh bắt đầu dọc theo các vết nứt và trên bề mặt các tinh thể của khoáng vật để hình thành những lớp vỏ phong hoá bao gồm các pha rắn chứa sắt đã bị oxy hoá và smectit. Phản ứng minh hoạ quá trình này như sau: 12,4Mg1,63Fe(II)0,37SiO4 (r) + 0,8Al(OH)2+(dd) + 25,4H+(dd) + 1,6H2O (l) + O2(k) = (Olivin) Mg0,40[Si7,2Al0,8]Mg6O20(OH)4(r) + 4,59FeO(OH)(r) + 5,2Si(OH)4 o(dd) + 13,5Mg2+(dd) (2.2) (saponit/smectit) (gơtit) Các phản ứng chủ yếu tham gia vào quá trình này là phản ứng thuỷ phân và phản ứng oxy hoá Fe(II) thành Fe(III). Pyroxen và amphibol chứa đựng các mạch đơn và các mạch kép khối tứ diện oxít silic để hình thành đơn vị lặp lại Si2O6 4- hoặc Si4O116- với các tỷ lệ Si/O xấp xỉ 0,33 - 0,36. Các amphibol đặc trưng bởi sự thay thế đồng hình của Al3+ cho Si4+ (bảng 2.2) và cả 2 nhóm khoáng vật này đều có nhiều loại cation kim loại hoá trị 2 cũng như Na+ và Fe3+, cùng với O2- trong phối trí bát diện để liên kết các mạch oxít silic với nhau. Các phản ứng phong hoá các silicát này cũng giống như phản ứng trong phương trình 2.2: smectit giàu Mg với Al và Si trong phối trí tứ diện và Fe oxy hoá trong phối trí bát diện được tạo thành cùng với các oxít sắt và các oxít silíc hoà tan; Na+, Ca2+ và Mg2+ được giải phóng ra dung dịch đất. Mica được hình thành từ 2 phiến khối tứ diện oxít silíc (đơn vị lặp lại là Si2O5 2-) kết hợp với một mặt phẳng của phiến khối bát diện chứa cation kim loại (hình 2.2). Phiến khối bát diện điển hình chứa các ion Al, Mg và Fe phối trí với O2- và OH- . Nếu cation kim loại đó có hoá trị 3, chỉ 2 trong 3 vị trí cation trong khối bát diện có thể được lấp đầy để đạt được cân bằng điện tích và phiến này được gọi là phiến nhị bát diện (dioctahedral). Nếu cation kim loại đó là cation hoá trị 2, tất cả 3 vị trí có thể được lấp đầy và phiến này được gọi là phiến tam bát diện (trioctahedral).

25

Sự thay thế đồng hình của Al cho Si, Fe(III) cho Al, và Fe hoặc Al cho Mg tìm thấy chủ yếu trong các mica cùng với sự thay thế của các nguyên tố vết được chỉ ra ở bảng 2.2a Muscovit và Biotit là những mica phổ biến trong đất, Muscovit là nhị bát diện, Biotit là tam bát diện (bảng 2.2). Trong cả 2 loại khoáng vật này, Al3+ thay thế cho Si4+ dẫn đến sự thiếu hụt điện tích. Sự thiếu hụt điện tích này được cân bằng bởi ion K+ là ion phối trí với 12 ion oxy ở các khoảng trống của 2 phiến khối tứ diện đối diện nhau thuộc một cặp lớp mica được xếp chồng lên nhau. Như vậy các ion K+ liên kết các lớp mica liền kề nhau với nhau. Phản ứng phong hoá đầu tiên của Muscovit thành vecmiculit được trình bày trong phương trình 2.2a. K2[Si6Al2]Al4O20(OH)4 +0,8Ca2+(dd) + 1,3Si(OH)4 o(dd) (Muscovit) 1,1Ca0,7[Si6,6Al1,4]Al4O20(OH)4(r) + 2K+(dd) + 0,4OH- (dd) + 1,6H2O(l) (2.2a) (vecmiculit) Điểm quan trọng của phản ứng này là sự giảm số lượng điện tích của cation lớp chung (2K+ ® 0,7Ca2+) được gây ra do sự giảm số lượng của Al được thay thế trong phối trí tứ diện (2Al ® 1,4Al, được chỉ ra trong những ngoặc vuông) trong phiến oxít silic. Sự giảm này tiếp tục khi vecmiculit phong hoá tiếp tục thành smectit: Ca0,7[Si6,6Al1,4]Al4O20(OH)4(r) + 0,42Mg2+(dd) + 0,86Si(OH)4 o(dd) +0,56 H+(dd) = 1,05AlOH0,652+[Si7,1Al0,9]Al3,6Mg0,4O20(OH)4(r) + 0,7Ca2+(dd) + 1,56H2O(l) (2.3) trong đó các cation nằm ở trong phiến khối tứ diện được đặt trong các ngoặc vuông.

26

Các quá trình tương tự xảy ra đối với Biotit, trừ sự giảm điện tích cation giữa các lớp được thực hiện do sự oxy hoá sắt cũng như do sự mất của nhôm phối trí tứ diện: K2[Si6Al2]Mg4Fe(II)2O20(OH)4(r) +3Mg2+(dd) + 2Si(OH)4 o(dd) = (Biotit) 1.25Mg0,4[Si6,4Al1,6]Mg5,2Fe(III)0,8O20(OH)4(r) + FeO(OH)(r) + K+(dd) + 4H+(dd) (2.4) (vecmiculit) (gơtit) Chú ý rằng điện tích của cation giữa các lớp bị giảm khoảng 0.8 điện tích dương do sự oxy hoá Fe(II) thành Fe(III) khi chuyển hoá Biotit thành vecmiculit. Phần còn lại của Fe phối trí bát diện bị bật ra khỏi phiến silicat để kết tủa như gơtit. Cấu trúc nguyên tử của các fenspat là khung ba chiều liên tục của các khối tứ diện chung góc như thạch anh, trừ khung khối tứ diện có chứa Al thay thế cho Si. Như vậy yêu cầu hoặc cation hoá trị 1 hoặc cation hoá trị 2 chiếm các lỗ hổng trong khung để cân bằng điện tích. Những khoáng vật này có đơn vị lặp lại hoặc là AlSi3O8 - với Na+ hoặc K+ để cân bằng điện tích, hoặc Al2Si2O8 2- với Ca2+ để cân bằng điện tích. Vì vậy dung dịch rắn (solid solution) của các khoáng vật này được hình thành rộng rãi. Các fenspat có thể bị phong hoá cuối cùng hình thành kaolinit và gipxit, nhưng sự phân huỷ của chúng ban đầu tạo thành alophan và smectit:

4KAlSi3O8(r) + 4H+(dd) + (n+16)H2O(l) = (octoclaz) Si3Al4O12.nH2O(r) + 9Si(OH)4 o(dd) + 4K+(dd) (2.5a) (alophan) 4KAlSi3O8(r) + 0,5Mg2+(dd) + 2H+(dd) + 10H2O(l) = (octoclaz) K[Si7,5Al0,5]Al3,5Mg0,5O20(OH)4(r) + 4,5Si(OH)4 o(dd) + 3K+(dd) (2.5b) (monmorilonit/smectit)

Chú ý các phản ứng này cũng có sự tiêu thụ proton, tạo ra axít silisic và các cation dạng hoà tan như phương trình 2.3. Như vậy đặc điểm chung của quá trình phong hoá các silicát nguyên sinh như sau: + Mất Al phối trí khối tứ diện + Sự oxy hoá của Fe(II) + Sự tiêu thụ proton + Sự giải phóng Si, và các cation kim loại Na+, K+, Ca2+ và Mg2+. Trong trường hợp các silicát dạng phiến (mica) cũng có sự giảm quan trọng của điện tích giữa các lớp cùng với các đặc điểm 1 và 2 nêu trên.

Một phần của tài liệu BÀI GIẢNG hóa học đất đh9 (Trang 26 - 29)