MÔ HÌNH DAO ĐỘNG CỦA BÁNH XE

Một phần của tài liệu Nghiên cứu dao động thẳng đứng của ô tô theo các mô hình khác nhau có tính đến hiện tượng mất liên kết giữa bánh xe và mặt đường. (Trang 36 - 39)

Mô hình dao động của bánh xe là một bộ phận quan trọng trong mô hình dao động của ô tô. Dưới tác dụng của các lực gây ra biến dạng (thẳng đứng), bánh xe thể hiện cả 3 đặc tính: quán tính, đàn hồi và cản dao động. Chính vì vậy, mô hình dao dộng thẳng đứng của bánh xe thường được lập dưới dạng một hệ dao động với các phần tử khối lượng, lò xo, giảm chấn. Trong các mô hình đó, khối lượng của bánh xe được tính đến trong khối lượng của cầu xe có liên quan.

Các mô hình dao động của bánh xe khác nhau cả ở mô hình vật lý và mô hình toán. Về mô hình vật lý, mỗi bánh xe có thể được biểu diễn bằng một cụm lò xo - giảm chấn (phổ biến), hay một số cụm lò xo - giảm chấn ghép song song như trong [65], hoặc giao nhau tại tâm của bánh xe như trong [63]. Tuy nhiên, xét về lý thuyết, mỗi hệ bao gồm nhiều cặp lò xo - giảm chấn đều

có thể được thay thế bởi (quy đổi thành) một hệ gồm chỉ một lò xo và một giảm chấn dựa trên nguyên tắc đảm bảo sự tương đương về lực hay chuyển vị [16], [52]. Nhờ khả năng quy đổi đó mà nếu xét về bản chất, các mô hình khác nhau của bánh xe chỉ khác nhau ở công thức tính hợp lực trong hệ lò xo và giảm chấn tương ứng.

Ứng xử của các cụm lò xo - giảm chấn biểu diễn tính đàn hồi và tính cản của bánh xe có thể là tuyến tính hoặc phi tuyến. Điều này không chỉ phụ thuộc vào tính chất vật lý của bánh xe thực mà còn phụ thuộc vào cách lựa chọn mô hình bánh xe và các giả thiết được áp dụng. Các giả thiết chủ yếu có liên quan đến việc xây dựng mô hình dao động của bánh xe là:

- Quan hệ lực - biến dạng trong mô hình dao động của bánh xe là tuyến tính hay phi tuyến.

- Có hay không kể đến biến dạng của đường và hiện tượng mất liên kết. - Có hay không kể đến sự thay đổi kích thước của vết tiếp xúc và áp suất trên vết tiếp xúc. Nếu có thì kể đến như thế nào?

- Đường tác dụng của lực đàn hồi và lực cản trong cụm lò xo - giảm chấn biểu diễn bánh xe có là các đường thẳng đứng và có trùng nhau hay không.

Hình 1.4 biểu diễn mô hình dao động của một bánh xe có ứng xử tuyến tính khi không kể đến hiện tượng mất liên kết. Theo đó, đầu dưới của cặp lò xo - giảm chấn biểu diễn bánh xe luôn tiếp xúc với mặt đường.

Trên hình vẽ:

m - khối lượng dao động (chứa khối lượng của bánh xe),

kL - hệ số độ cứng của lò xo mô hình (thể hiện tính đàn hồi của bánh xe), cL - hệ số cản của giảm chấn mô hình (thể hiện tính cản của bánh xe), A, B - các điểm liên kết phía trên và phía dưới (với cầu xe và mặt đường)

của cụm lò xo - giảm chấn,

D - hình chiếu của A và B trên biên dạng mặt đường (D luôn trùng với B

khi không kể đến hiện tượng mất liên kết),

uA - chuyển vị thẳng đứng của điểm A so với một vị trí mốc nào đó (như

vị trí cân bằng tĩnh, vị trí khi lò xo ở trạng thái tự nhiên, v.v.),

uD - chuyển vị thẳng đứng của điểm D so với mặt đường danh nghĩa; với

đường không bằng phẳng và có tính đến biến dạng thì uD được xác định bởi:

D D D

uwr (1.5)

trong đó rD là chiều cao mấp mô và wD là biến dạng thẳng đứng của đường tại điểm D (wD = 0 khi không kể đến biến dạng của đường).

Công thức tính hợp lực của cụm lò xo - giảm chấn biểu diễn bánh xe trong trường hợp không kể đến mất liên kết là:

( ) ( )

L L D A L D A

Fk uuc uu (1.6)

Công thức trên được sử dụng khi uA được tính từ vị trí ứng với khi lò xo mô hình ở trạng thái tự nhiên của nó.

Mô hình dao động của bánh xe có kể đến hiện tượng mất liên kết đã được một số tác giả đề cập đến. Tuy nhiên, do các mô hình này khá phức tạp và không thuận tiện cho việc áp dụng nên chúng không được trình bày ở đây mà sẽ được giới thiệu chi tiết hơn ở trong chương 2. Một mô hình dao động của bánh xe sẽ được tác giả luận án đề xuất cho trường hợp có kể đến hiện tượng mất liên kết và biến dạng của đường cùng với mô hình dao động dạng 1/4 của ô tô.

Một phần của tài liệu Nghiên cứu dao động thẳng đứng của ô tô theo các mô hình khác nhau có tính đến hiện tượng mất liên kết giữa bánh xe và mặt đường. (Trang 36 - 39)

Tải bản đầy đủ (PDF)

(180 trang)