Tác giả phân tích thống kê mô tả nhằm mô tả sơ bộ cơ bản dữ liệu thu thập được: giới tính, tuổi, thu nhập, yếu tố nào có tỷ lệ hoàn toàn đồng ý cao nhất, yếu tố nào có tỷ lệ hoàn toàn không đồng ý cao nhất.
Sau đó tác giả đi vào phân tích chi tiết: thang đo và độ tin cậy của các biến quan sát đánh giá bằng hệ số Cronbach’s Alpha và phương pháp phân tích nhân tố khám phá. Các biến có hệ tương quan biến tổng nhỏ hơn 0.3 sẽ bị loại bỏ và tiêu chuẩn để chọn thang đo là có độ tin cậy alpha từ 0.6 trở lên (Nunnally và Burnstein, 1994) để bảo đảm độ tin cậy của thang đo.
Tiếp theo, phương pháp EFA được sử dụng với các biến quan sát có trọng số tải (factor loading) nhỏ hơn 0.5 sẽ bị loại bỏ. Phương pháp trích hệ số được sử dụng là principle components với phép quay varimax và điểm dừng khi trích các yếu tố có eigenvalue bằng 1. Thang đo được chấp nhận khi phương sai trích bằng hoặc lớn hơn 50%. Sau khi phân tích kết quả nhân tố khám phá (EFA).
Phân tích nhân tố khẳng định (CFA)
+ Đánh giá độ tin cậy của của khái niệm nghiên cứu: (a) Hệ số tin cậy tổng hợp (composite reliability) (Joreskog, 1971), (b) tổng phương sai trích (Fornell & Larcker, 1981) và (c) hệ số tin cậy Cronbach’s Alpha. Theo Hair (1998): “phương sai trích (Variance Extracted) của mỗi khái niệm nên vượt quá giá trị 0,5”. Phương sai trích phản ánh biến thiên chung của các biến quan sát được tính toán bởi biến tiềm ẩn. Schumacker và Lomax (2010) cho rằng trong phân tích nhân tố khẳng định, độ tin cậy của tập hợp các biến quan sát đo lường một khái niệm (nhân tố); hệ số tin cậy Cronbach’s Alpha vẫn thường được sử dụng.
+ Tính đơn hướng (unidimensionality): Theo Steenkamp & Van Trijp (1991), mức độ phù hợp của mô hình lý thuyết với dữ liệu thị trường cho phép điều kiện cần và đủ để cho tập biến quan sát đạt được tính đơn hướng.
+ Giá trị hội tụ (Convergent validity): Gerbring và Anderson (1988) cho rằng các thang đo đảm bảo giá trị hội tụ khi các trọng số chuẩn hóa của thang đo đều cao (>0,5); và có ý nghĩa thống kê (Sig < 0,05).
+ Giá trị phân biệt (Discriminant validity): Các khái niệm trong mô hình tới hạn. Hệ số tương quan giữa các khái niệm nghiên cứu khác 1 thì các thang đo đạt được giá trị phân biệt.
+ Giá trị liên hệ lý thuyết (Nomological validity): Các vấn đề từ (1) đến (4) được đánh giá thông qua mô hình đo lường. Riêng giá trị liên hệ lý thuyết
được đánh giá trong mô hình lý thuyết (Anderson và Gerbing, 1988). Khi các vấn đề trên thỏa mãn thì mô hình đo lường là tốt. Tuy nhiên rất hiếm mô hình đo lường nào đạt được tất cả các vấn đề trên.
Để đánh giá mức độ phù hợp mô hình, nghiên cứu sử dụng 2 (CMIN/df); chỉ số (CFI), (TLI); RMSEA. Mô hình được xem là thích hợp với dữ liệu thị trường khi kiểm định 2 có P-value < 0,1.
Tuy nhiên 2 có nhược điểm là phụ thuộc vào kích thước mẫu. Nếu mô hình có các tiêu chí: GFI, TLI, CFI ≥ 0,9 (Bentler & Bonett, 1980); CMIN/df ≤ 2 (Carmines & McIver, 1981); RMSEA ≤ 0,08, RMSEA ≤ 0,05 được xem là rất tốt (Steiger, 1990); mô hình được xem là phù hợp với dữ liệu thị trường. - Kiểm định mô hình bằng phân tích cấu trúc tuyến tính SEM: Trong kiểm định giả thuyết và mô hình nghiên cứu, mô hình cấu trúc tuyến tính SEM cho phép chúng ta kết hợp được các khái niệm tiềm ẩn với những đo lường của chúng ta và có thể xem xét đo các trường hợp độc lập hay kết hợp chung với mô hình lý thuyết cùng một lúc. Chính vì vậy, phương pháp phân tích SEM được sử dụng rất phổ biến trong các ngành khoa học xã hội trong những năm gần đây và thường được gọi là phương pháp phân tích dữ liệu thế hệ thứ hai (Nguyễn Đình Thọ, 2011).
Phương pháp phân tích cấu trúc tuyến tính được sử dụng để kiểm định mô hình nghiên cứu. Phương pháp ước lượng ML (Maximum Likelihood) được sử dụng để ước lượng các tham số trong các mô hình. Lý do là khi kiểm định phân phối của các biến quan sát thì phân phối này lệch một ít so với phân phối chuẩn đa biến, tuy nhiên hầu hết các Kurtosis và Skewness đều nằm trong khoảng [-1; +1] nên ML vẫn là phương pháp ước lượng thích hợp (Muthen & Kaplan, 1985). Phương pháp Bootstrap sẽ được sử dụng để ước lượng lại các tham số mô hình để kiểm tra độ tin cậy của các ước lượng. Kết quả ước lượng ML sẽ được sử dụng để kiểm định lại các giả thuyết.