Thân cây Na rừng sau khi thu hái về được rửa sạch, phơi khô, chặt và nghiền nhỏ thu được 5,5 kg bột khô. Bột này được chiết với methanol 80% (6 L x 3 lần) ở nhiệt độ phòng trong 48 h. Dịch chiết methanol được cô quay dưới áp suất giảm thu được 320 g cặn chiết. Cặn chiết này được hòa vào 2 L nước và chiết phân bố lần lượt với
n-hexane (1 L x 3 lần), ethyl acetate (1 L x 3 lần), phần còn lại là nước. Các dịch chiết tiến hành cô quay dưới áp suất giảm thu được các cặn chiết tương ứng, cặn H (78 g) và cặn E (165 g).
Phân đoạn ethyl acetate được sắc ký cột pha thường với chất hấp phụ silica gel, rửa giải bằng hệ CH2Cl2/MeOH (từ 0% đến 100%) thu được 12 phân đoạn nhỏ (KCE1-KCE12) dựa vào dữ liệu sắc ký bản mỏng của chúng.
Phân đoạn KCE3 (7,5 g) được tiến hành sắc ký cột pha đảo RP18, rửa giải bằng hệ acetone/MeOH/nước (1/1/1,5) thu được 6 phân đoạn nhỏ (KCE3A-KCE3F).
Phân đoạn KCE3B (320 mg) được tinh chế trên cột Sephadex LH-20, rửa giải bằng methanol thu được hợp chất KC13 (5,6 mg).
Phân đoạn KCE3D (550 mg) được sắc ký cột pha thường rửa giải hệ CH2Cl2/EtOAc (5/1) thu được hợp chất KC15 (6,1 mg).
Phân đoạn KCE3F (625 mg) được tinh chế trên sắc ký cột pha thường với hệ dung môi n-hexane/acetone (4/1) thu được hợp chất KC14 (7,1 mg).
36 Phân đoạn KCE5 (200 mg) được tiến hành sắc ký cột pha đảo RP18, rửa giải bằng acetone/H2O (1,2/1) để thu được hợp chất KC1 (5,8 mg).
Sắc ký cột pha đảo RP18 phân đoạn KCE6 (8,3 g), rửa giải bằng hệ dung môi MeOH/H2O (1,5/1) thu được 5 phân đoạn nhỏ (KCE6A - KCE6E). Phân đoạn KCE6B (350 mg) được tinh chế thêm bằng sắc ký cột silica gel với hệ dung môi EtOAc/acetone (3/1,2) thu được KC2 (8,5 mg) và KC3 (5,5 mg). Hợp chất KC4
(6,2 mg) thu được từ phân đoạn KCE6E (320 mg) bằng sắc ký cột RP18 và rửa giải bằng hệ dung môi acetone/H2O (1,3/1).
Như vậy, từ thân cây Na rừng đã phân lập được 7 hợp chất, từ KC1-KC4 và
KC13-KC15.
Hình 3.4. Sơ đồ phân lập chất từ thân cây Na rừng 3.3.1.2. Từ lá cây
Lá cây Na rừng sau khi thu thập được rửa sạch, phơi khô và nghiền nhỏ thu được 3,5 kg bột khô. Lượng bột khô này được chiết với 95% methanol (4L × 4 lần) ở nhiệt độ phòng trong 48 giờ. Dịch chiết MeOH sau đó được làm khô dưới áp suất giảm thu được 125 g cặn chiết. Cặn chiết này được hòa vào nước (2 L) và được chiết phân bố lần lượng với n-hexane (1 L × 3 lần, 78 g), CH2Cl2 (1 L × 4 lần, 11 g) và lớp H2O.
Phân đoạn CH2Cl2 (11 g) được tách trên sắc ký cột silica gel rửa giải với hệ dung môi MeOH/CH2Cl2 (từ 0-100%) để thu được 8 phân đoạn nhỏ (KCB1 ‒ KCB7).
Phân đoạn KCB5 (0,2 g) được tinh chế trên cột Sephadex LH-20 rửa giải bằng hệ dung môi MeOH/H2O (1/1) thu được KC5 (4,5 mg).
37 Phân đoạn KCB6 (1,2 g) được tiến hành sắc ký cột pha thường, rửa giải bằng hệ
n-hexane/CH2Cl2/MeOH/H2O (1/3/1), tinh chế thêm trên sắc ký cột pha đảo RP18 với hệ acetone/H2O (1/1,8) thu được KC6 (4,3 mg).
Lớp H2O được phân tách trên cột Diaion HP-20 bằng hệ dung môi MeOH trong nước (từ 0% đến 100%) thu được bảy phân đoạn (KCC1 ‒ KCC7).
Hợp chất KC7 (2,7 mg) và KC8 (6,3 mg) thu được từ sắc ký cột pha đảo RP18 phân đoạn KCC2 (0,35 g) hệ dung môi acetone/H2O (1/2,5).
Phân đoạn KCC3 (0,16 g) được tiến hành sắc ký cột pha thường, rửa giải bằng hệ dung môi EtOAc/MeOH/H2O (5/1/0,02) để thu được hợp chất KC11 (5,2 mg).
Phân đoạn KCC4 (0,86 g) được phân tách trên cột silica gel pha thường hệ dung môi CH2Cl2/MeOH (7/1), tinh chế thêm trên Sephadex LH-20 rửa giải bằng hệ dung môi MeOH/H2O (1/1) để thu được hợp chất KC10 (5,9 mg).
Hợp chất KC9 (4,5 mg) thu được từ phân đoạn KCC5 (0,72 g) trên sắc ký cột pha đảo RP18 rửa giải bằng hệ dung môi acetone/H2O (1/1,6).
Phân đoạn KCC6 (1,08 g) được tiến hành sắc ký cột pha đảo RP18 với hệ dung môi acetone/H2O (1/1,2) để thu được hợp chất KC12 (6,3 mg).
Như vậy, từ lá cây Na rừng đã phân lập được 8 hợp chất, từ KC5-KC12.
Hình 3.5. Sơ đồ phân lập chất từ lá cây Na rừng
3.2.2. Thông số vật lý và dữ liệu phổ của các hợp chất phân lập từ loài Na rừng 3.2.2.1. Hợp chất KC1: Kadnanolactone H
Chất bột màu trắng
1H-NMR(400 MHz, pyridine-d5) và 13C-NMR(100 MHz, pyridine-d5): xem Bảng 4.2.1.
3.2.2.2. Hợp chất KC2: Micrandiactone H
Chất bột màu trắng
38 3.2.2.3. Hợp chất KC3: Kadcoccilactone V (hợp chất mới) Chất bột màu trắng HR-ESI-MS: m/z 533,2745 [M+H]+ KLPT chính xác (tính toán) [C29H41O9]+: 533,2751 CTPT: C29H40O9 Mw = 532 g/mol
1H-NMR(400 MHz, pyridine-d5) và 13C-NMR(100 MHz, pyridine-d5): xem Bảng 4.2.3.
3.2.2.4. Hợp chất KC4: Kadnanolactone I
Chất bột màu trắng
1H-NMR(400 MHz, pyridine-d5) và 13C-NMR (100 MHz, pyridine-d5): xem Bảng 4.2.4.
3.2.2.5. Hợp chất KC5: Kadsuracin A (hợp chất mới) Chất bột màu trắng CD (MeOH) λmax nm (Δε): 212-220 (+10); 244 (-8) HR-ESI-MS: m/z 572,2488 [M+NH4]+ KLPT chính xác (tính toán) [C30H34O10NH4]+: 572,2496 CTPT: C30H34O10 Mw = 554 g/mol
1H-NMR(400 MHz, chloroform-d1) và 13C-NMR(100 MHz, chloroform-d1): xem Bảng 4.2.5.
3.2.2.6. Hợp chất KC6: Interiotherin C
Chất bột màu trắng
1H-NMR(400 MHz, chloroform-d1) và 13C-NMR(100 MHz, chloroform-d1): xem Bảng 4.2.6.
3.2.2.7. Hợp chất KC7: (S)-1-phenylethyl-6-α-L-arabinopyranosyl-β-D-
glucopyranoside (hợp chất mới)
Chất dạng dầu không màu
Góc quay cực riêng: − 60,2 (trong MeOH; c 0,05). CD (MeOH) λmax nm (Δε): 210 (-6)
HR-ESI-MS: m/z 439,1577 [M+Na]+
KLPT chính xác (tính toán) [C19H28O10Na]+: 439,1580 CTPT: C19H28O10 Mw = 416 g/mol
1H-NMR(400 MHz, methanol-d4) và 13C-NMR (100 MHz, methanol-d4): xem Bảng 4.2.7.
3.2.2.8. Hợp chất KC8: 3,4-dihydroxyphenylethanol-5-O-β-D-glucose
Chất bột màu nâu
1H-NMR(400 MHz, methanol-d4) và 13C-NMR (100 MHz, methanol-d4): xem Bảng 4.2.8.
3.2.2.9. Hợp chất KC9: Cimidahurinine
Chất dạng dầu không màu
1H-NMR(400 MHz, methanol-d4) và 13C-NMR (100 MHz, methanol-d4): xem Bảng 4.2.9.
3.2.2.10. Hợp chất KC10: Thalictoside
Chất bột màu trắng
1H-NMR(400 MHz, methanol-d4) và 13C-NMR (100 MHz, methanol-d4): xem Bảng 4.2.10.
39
3.2.2.11. Hợp chất KC11: Icariside E3
Chất bột không màu
1H-NMR(400 MHz, methanol-d4) và 13C-NMR (100 MHz, methanol-d4): xem Bảng 4.2.11.
3.2.2.12. Hợp chất KC12: Phloridzin
Chất bột màu vàng đỏ
1H-NMR(400 MHz, methanol-d4) và 13C-NMR (100 MHz, methanol-d4): xem Bảng 4.2.12.
3.2.2.13. Hợp chất KC13: Seco-coccinic acid A
Chất rắn không màu
1H-NMR (400 MHz, pyridine-d5) và 13C-NMR (100 MHz, pyridine-d5): xem Bảng 4.2.13.
3.2.2.14. Hợp chất KC14: Seco-coccinic acid F
Chất rắn không màu
1H-NMR (400 MHz, pyridine-d5) và 13C-NMR (100 MHz, pyridine-d5): xem Bảng 4.2.14.
3.2.2.15. Hợp chất KC15: Schisanlactone B
Chất bột màu trắng
1H-NMR(400 MHz, chloroform-d1) và 13C-NMR(100 MHz, chloroform-d1): xem Bảng 4.2.15.
40
CHƯƠNG 4. KẾT QUẢ VÀ THẢO LUẬN
4.1. Các hợp chất phân lập từ loài Thông đất (L.cernua)
Từ toàn bộ thân của loài Thông đất đã phân lập được 20 hợp chất, trong đó có 3 hợp chất mới. Cấu trúc của các hợp chất được xác định như sau:
4.1.1. Hợp chất LC1: Lycocernuaside E (hợp chất mới)
Hình 4.1.1.a. Cấu trúc của hợp chất lycocernuaside D và LC1
Hợp chất LC1 thu được ở dạng bột màu trắng.
Công thức phân tử của LC1 được xác định là C25H32O12, dựa trên phổ HR-ESI- MS, cho pic ion giả phân tử [M+Cl]- tại m/z 559,1587 (tính toán cho C25H32O12Cl-; 559,1588).
Hình 4.1.1.b. Phổ HR-ESI-MS của hợp chất LC1
Phổ 1H-NMR của LC1 cho thấy nó thuộc bộ khung neolignan, cụ thể gồm sáu tín hiệu proton của hai vòng thơm thế ba ở các vị trí 1,3,4 với δH 7,14 (1H; d; J = 1,5 Hz, H-2); 7,13 (1H; d; J = 8,5 Hz; H-5) và 6,99 (1H; dd; J = 2,0; 8,5 Hz; H-6), cũng như δH 7,56 (1H; d; J = 2,0 Hz, H-2′); 7,10 (1H; d; J = 8,5 Hz; H-5′); 7,60 (1H; dd;
J = 2,0; 8,5 Hz; H-6′) và, hai nhóm oxymethine ở δH 4,97 (1H; d; J = 4,5 Hz; H-7) và 4,61 (1H; d; J = 5,5 Hz; H-8), một nhóm oxymethylene ở δH 3,60 (1H; dd; J = 6,0; 12,0 Hz; H-9a); 3,87 (1H; m; H-9b), hai nhóm methoxy ở δH 3,92 (3H; s; 3′- OCH3) và 3,85 (3H; s; 3-OCH3), một proton anome ở δH 4,88 (1H; tín hiệu chồng chập, H-1′′), và một nhóm methyl acetyl hóa ở δH 2,57 (3H; s).
Cấu hình β-D-glucoside được khẳng định khi so sánh giá trị δCcủa LC1 với tài liệu tham khảo [61].
41
Hình 4.1.1.c. Phổ 1H-NMR giãn rộng của hợp chất LC1 đo trong methanol-d4
Phổ 13C-NMR của LC1 cho thấy sự xuất hiện của 25 nguyên tử carbon, bao gồm sáu nguyên tử carbon thuộc một đơn vị β-glucopyranosyl ở δC 102,9 (CH; C-1′′), 74,9 (CH; C-2′′); 78,2 (CH; C-3′′); 71,4 (CH; C-4′′); 77,8 (CH; C-5′′) và 62,5 (CH2; C-6′′), điều này được làm sáng tỏ qua các tương quan trên phổ HSQC và HMBC. Ngoài ra là tín hiệu của 3 nhóm methyl, 1 nhóm methylene, 8 nhóm methine và 7 carbon không chứa proton.
Hình 4.1.1.d. Phổ 13C-NMR của hợp chất LC1 đo trong methanol-d4
42 Tương quan HMBC giữa H-1′′ (δH 4,90) và C-4 (δC 147,5) xác nhận rằng đơn vị glucose được liên kết tại C-4. Vị trí của hai nhóm methoxy tại C-3 và C-3′ được xác định bởi các pic giao trên HMBC từ 3-OCH3 (δH 3,85) đến C-3 (δC 150,6) và từ 3′- OCH3 (δH 3,92) đến C-3′ (δC 151,1).
Hình 4.1.1.e. Phổ HSQC của hợp chất LC1 đo trong methanol-d4
Hình 4.1.1.f. Phổ HMBC của hợp chất LC1 đo trong methanol-d4
Cấu hình tương đối của gốc aglycone trong LC1 được khẳng định là erythro dựa vào hằng số tương tác bé giữa H-7 và H-8 (3J7,8 = 4,5 Hz) và so sánh dữ liệu 1H và
43 13C-NMR với các dữ liệu của neolignan lycocernuaside D được báo cáo trước đây [17, 62], điểm khác biệt là sự xuất hiện của một nhóm glucoside tại vị trí C-4 trong
LC1. Do đó, cấu trúc của LC1 được xác định như trong hình 4.1.1.g, đây là hợp chất mới và được đặt tên là lycocernuaside E (chi tiết phổ xem phụ lục 1).
Hình 4.1.1.g. Cấu trúc hóa học và các tương tác HMBC chính của LC1 Bảng 4.1.1. Số liệu phổ NMR của hợp chất LC1 và hợp chất tham khảo
Vị trí #δC δCa,b DEPT δHa,c độ bội, (J= Hz) HMBC 1 133,3 137,3 C - 2 111,5 112,5 CH 7,14 d (1,5) 1, 4, 6, 7 3 147,5 150,6 C - 4 146,1 147,5 C - 5 115,2 117,6 CH 7,13 d (8,5) 3 6 119,5 120,6 CH 6,99 dd (2,0; 8,5) 2, 4 7 71,6 73,5 CH 4,97 d (4,5) 1, 2, 6, 8, 9 8 84,1 85,4 CH 4,61 d (5,5) 1, 7, 9, 4′ 9 60,7 62,0 CH2 3,60 dd (6,0; 12,0)/3,87 m 8 1′ 153,5 131,9 C - 2′ 111,4 112,4 CH 7,56 d (2,0) 4′, 6′, 7′ 3′ 149,5 151,1 CH - 4′ 130,1 154,5 C - 5′ 113,8 115,6 CH 7,10 d (8,5) 3′, 4′ 6′ 123,3 124,6 CH 7,60 dd (2,0; 8,5) 2′, 4′, 7′ 7′ 196,7 199,5 C - 8′ 26,8 26,3 CH3 2,57 s 1′, 7′ 3-OCH3 55,9 56,7 CH3 3,85 s 3 3′-OCH3 56,1 56,6 CH3 3,92 s 3′ 1′′ 102,9 CH 4,88 (tín hiệu chồng chập) 4 2′′ 74,9 CH 3,48 m 3′′ 78,2 CH 3,41 m 4′′ 71,4 CH 3,41 m 5′′ 77,8 CH 3,48 m 6′′ 62,5 CH2 3,70 dd (5,0; 12,0)/3,87 m
44
4.1.2. Hợp chất LC2: Lycocernuaside A
Hình 4.1.2: Cấu trúc hóa học và các tương tác HMBC chính của LC2
Hợp chất LC2 thu được dạng bột màu trắng.
Phổ 1H-NMR cho thấy các tín hiệu của một vòng thơm thế 3 ở các vị trí 1,3,4 tại [δH 7,05 (br s; H-2); 7,17 (d; J = 8,0 Hz; H-5) và 6,96 (br d; J = 8,0 Hz; H-6)] và một vòng thơm thế 4 ở các vị trí 1,3,4,5 tại δH 6,78 (s; H-2′); 6,76 (s; H-6′). Ngoài ra là các tín hiệu proton của propanoic acid tại δH 2,86 (t; J = 7,5 Hz; H-7′); 2,58 (t; J = 7,5 Hz; H-8′) và một proton oxymethine tại δH 5,57 (d; J = 6,0 Hz; H-7). Các nhóm methoxy được quan sát thấy tại δH 3,85 và 3,88.
Bên cạnh đó, các tín hiệu đặc trưng của một đơn vị glucose cũng được quan sát thấy tại δH 4,90 (d; J = 7 Hz, H-1′′) và các tín hiệu ở vùng 3,50-3,87 ppm.
Phổ 13C-NMR cho thấy sự có mặt của 26 tín hiệu carbon bao gồm 12 carbon thơm, bên cạnh đó là các tín hiệu của nhóm oxymethine tại δC 88,5 (C-7); nhóm methine tại δC 55,6 (C-8), các nhóm methylene tại δC 32,0; 37,5(C-7′, C-8′), và nhóm methoxy tại δC 56,7; 56,8 (3′-OCH3; 3-OCH3).
Các dữ liệu trên cho thấy LC2 có cấu trúc là một neolignan glycoside dihydrobenzofuran [14].
Bảng 4.1.2. Số liệu phổ NMR của hợp chất LC2 và hợp chất tham khảo
Vị trí #δC δCa,b DEPT δHa,c độ bội, (J= Hz) HMBC 1 129,6 129,7 C - 2 111,2 111,2 CH 7,05 br s 3, 4, 6, 7 3 150,9 151,0 C - 4 147,5 147,6 C - 5 118,1 118,1 CH 7,17 d (8,0) 6 119,4 119,4 CH 6,96 br d (8,0) 2, 4, 7, 8 7 88,4 88,5 CH 5,57 d (6,0) 1, 2, 6, 8, 9 8 55,5 55,6 CH 3,51 m 1, 7, 9 9 65,2 65,0 CH2 3,87 m/3,77 m 1′ 136,1 136,0 C - 2′ 114,1 114,2 CH 6,78 s 3′, 4′, 6′, 7′ 3′ 138,5 138,3 C - 4′ 147,7 147,8 C - 5′ 145,2 145,3 C - 1′, 3′, 4′
45 6′ 117,8 117,9 CH 6,76 s 2′, 4′, 7′ 7′ 32,3 32,0 CH2 2,86 t (7,5) 1′, 2′, 6′, 8′, 9′ 8′ 38,1 37,5 CH2 2,58 t (7,5) 1′, 9′ 9′ 178,1 - C - 3-OCH3 56,8 56,8 CH3 3,88 s 3 3′-OCH3 56,7 56,7 CH3 3,85 s 3′ 1′′ 102,8 102,8 CH 4,90 d (7,0) 4′ 2′′ 74,8 74,9 CH 3,51 m 3′′ 77,8 77,9 CH 3,50 m 4′′ 71,3 71,4 CH 3,46 m 5′′ 79,4 78,2 CH 3,47 m 6′′ 62,4 62,5 CH2 3,70 d (11,0)/3,87 m
#δC của lycocernuaside A [14] đo trong methanol-d4, amethanol-d4, b125 MHz, c500 MHz
Trên phổ HMBC cho thấy các tương tác giữa H-6/H-2 đến C-7 cho phép xác định nhóm oxymethine được gắn vào vị trí C-1 và tương tác giữa H-7′/H-8′ đến C- 1′/C-9′ khẳng định phần propionic acid được gắn vào C-1′. Vị trí các nhóm methoxy được khẳng định dựa vào tương quan HMBC của các proton nhóm methoxy đến C- 3 và C-3′. Tương quan HMBC của H-1″ (δH 4,90) với C-4 (δC 147,6) chỉ ra rằng đơn vị glucopyranosyl được liên kết với oxy ở C-4, và giá trị J của proton anome (J = 7,0 Hz, H-1′′) đã khẳng định cấu hình β-glucoside. Cấu hình của C-7 và C-8 được khẳng định là trans do giá trị hằng số tương tác đặc trưng của chúng J7,8= 6,0 Hz.
So sánh các dữ kiện phổ NMR của hợp chất LC2 với hợp chất lycocernuaside A đã được công bố [14], nhận thấy có sự phù hợp về dữ kiện phổ (bảng 4.1.2). Điều này cho phép xác định hợp chất LC2 là lycocernuaside A (chi tiết phổ xem phụ lục 2).
4.1.3. Hợp chất LC3: Bombasin 4-O-β-D-glucopyranoside
Hình 4.1.3: Cấu trúc hóa học và các tương tác HMBC chính của LC3
Hợp chất LC3 thu được dạng bột màu trắng.
Các dữ kiện phổ NMR của hợp chất LC3 có sự tương đồng với các dữ kiện phổ của hợp chất LC2 cho thấy nó là một neolignan glycoside dihydrobenzofuran. Sự khác biệt nằm ở vị trí C-7' và C-8', đồng thời ở LC3 không còn tín hiệu của carbon nhóm carboxyl tại δC 178,1 (C-9') trong LC2.
46 Giá trị độ chuyển dịch hóa học δC 199,3 gợi ý sự có mặt của nhóm carbonyl tại vị trí C-7', và nhóm CH3 tại δC 26,5 (C-8'). Điều này được khẳng định thêm khi phân tích các tương quan trên HSQC và HMBC.
Bảng 4.1.3. Số liệu phổ NMR của hợp chất LC3 và hợp chất tham khảo
Vị trí #δC δCa,b DEPT δHa,c độ bội, (J= Hz) HMBC 1 134,6 132,8 C - 2 110,5 111,3 CH 7,05 d (2,0) 3, 4, 6, 7 3 149,1 151,1 C - 4 146,4 147,9 C - 5 115,5 113,9 C 7,17 d (8,5) 6 118,2 118,1 CH 6,94 dd (2,0; 8,5) 2, 4, 7, 8 7 88,0 89,8 CH 5,70 d (6,0) 1, 2, 6, 8, 9 8 52,5 54,7 CH3 3,46 m 5', 1, 9 9 62,6 62,5 C 3,77-3,87 m 5', 7, 8 1′ 131,1 130,3 C - 2′ 112,2 113,9 CH 7,57 d (1,5) 3', 4', 6', 7' 3′ 143,6 145,6 C - 4′ 152,0 147,8 C - 5′ 129,4 118,1 CH - 1', 3', 4' 6′ 118,8 119,4 CH 7,64 s 2', 4', 7' 7′ 196,2 199,3 C - 1', 2', 6', 8' 8′ 26,5 26,5 CH3 2,58 s 1', 7' 3-OCH3 55,8 56,8 CH2 3,84-3,92 m 3 3′-OCH3 55,8 56,8 CH3 3,84-3,92 m 3' 1′′ 100,0 102,7 CH3 4,91 d (7,0) 4 2′′ 73,1 74,9 CH 3,40-3,42 m 3′′ 76,6 77,9 CH 3,70-3,72 m 4′′ 69,6 71,4 CH 3,69-3,71 m 5′′ 76,9 78,2 CH 3,40-3,42 m 6′′ 60,6 62,5 CH2 3,70-3,87 m
#δC của bombasin 4-O-β-D-glucopyranoside [63] đo trong DMSO-d6, amethanol-d4, b125 MHz, c500 MHz
So sánh dữ kiện phổ của LC3 với hợp chất bombasin 4-O-β-D-glucopyranoside (lycocernuside C)được công bố trong tài liệu [65] nhận thấy có sự phù hợp về các tín hiệu phổ (bảng 4.1.3) cho phép xác định hợp chất LC3 là bombasin 4-O-β-D-
47
4.1.4. Hợp chất LC4: Dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside glucopyranoside
Hình 4.1.4: Cấu trúc hóa học và các tương tác HMBC chính của LC4
Hợp chất LC4 thu được dạng chất bột màu trắng.
Các dữ kiện phổ NMR của hợp chất LC4 cho thấy nó tương tự như hợp chất
LC2. Điểm khác biệt duy nhất tại vị trí C-9'. Trong LC2, vị trí C-9' là một nhóm carboxyl với giá trị độ chuyển dịch hóa học đặc trưng δC 178,1. Tuy nhiên trong
LC4, tín hiệu C-9' đã được chuyển xuống vùng trường cao tại δC 62,2, gợi ý sự có mặt của một nhóm methylene liên kết với oxy. Điều này được khẳng định nhờ phổ 1H-NMR và HSQC khi tín hiệu C-9' được gắn tương ứng với tín hiệu proton tại δH 3,77 (dd; J = 7,5; 11,0)/3,87 m, cho thấy tại C-9' là nhóm hydroxymethylene.
Bảng 4.1.4. Số liệu phổ NMR của hợp chất LC4 và hợp chất tham khảo
Vị trí #δC δCa,b DEPT δHa,c mult, (J= Hz) HMBC 1 136,8 138,3 C - 2 111,3 111,2 CH 6,75 s 3, 4, 6, 7 3 147,2 150,9 C - 4 150,2 147,6 C - 5 116,5 118,1 C - 6 118,9 119,4 CH 6,73 s 2, 4, 7, 8' 7 87,9 88,4 CH 2,64 t (8,0) 1, 2, 6, 8, 9 8 55,1 55,6 CH2 1,83 m 1, 7, 9 9 64,4 65,0 CH2 3,58 t (7,0) 7, 8