khách hàng (biến độc lập). Nghĩa là, mô hình Logit có thể ước lượng xác xuất khả năng nợ xấu của một khách hàng là bao nhiêu từ mẫu.
Cấu trúc dữ liệu trong mô hình như sau:
- Biến độc lập: Giá trị liên tục hoặc rời rạc. - Biến phụ thuộc: Giá trị nhị phân.
Mô hình kinh tế lượng tương ứng là:
k kX X X Zi pi pi li = = + + + + − = ) .... 1 ln( 0 1 1 2 2 Trong đó: - P là xác xuất trả nợ của khách hàng. - 123,...,k là các hệ số. - X1X2,...,Xk là các nhân tố ảnh hưởng.
2.4.2.1. Đặc điểm mô hình Logit trong việc đánh giá khả năng trả nợ của khách hàng. hàng.
Mô hình Logit (Maddala, 1984) là mô hình định lượng trong đó biến phụ thuộc là biến giả, chỉ nhận 2 giá trị là 0 hoặc 1. Mô hình này được ứng dụng rộng rãi trong phân tích kinh tế nói chung và rủi ro tín dụng nói riêng. Mô hình Logit là mô hình toán học hồi quy để xem xét mối liên hệ giữa biến (Y) là biến phụ thuộc và tất cả các biến còn lại là biến độc lập.
Bảng 2. 3. Cấu trúc các biến trong mô hình Logit
Biến Kí hiệu Loại
Phụ thuộc Y Nhị phân
(Nguồn: https://mc.ai/logistic-regression-odds-and-log-odds-pattern-for-equidistant-
observations)
Hình 2. 2. Đồ thị mô hình Logit
Y đóng vai trò là biến phụ thuộc và là biến nhị phân, chỉ có thể nhận hai giá trị l à 0 hoặc 1, cụ thể là: 0 nếu không có khả năng trả nợ, 1 nếu có khả năng trả nợ.
− Xi là biến độc lập, thể hiện các nhân tố ảnh hưởng đến khách hàng, ví dụ như ROE, ROA, vốn chủ sở hữu… Đối với KHDN.
− là giá trị ước lượng của Y, thu được khi hồi quy Y theo các biến độc lập. Một điều cần lưu ý là giá trị chưa chắc chắn đã thỏa mãn điều kiện do là giá trị ước lượng phụ thuộc vào các biến độc lập.
Khi đó, phương trình tính xác suất khách hàng trả được nợ (tức là xác suất Y=1) được tính theo công thức sau, trong đó e là hằng số Euler (xấp xỉ 2,718):
0 1 1 2 2 0 1 1 2 2 exp( ... ) 1 exp( ... ) 1 Y n n i Y n n X X X e p X X X e + + + + = = + + + + + +
Như vậy để tính xác suất trả được nợ của khách hàng phải tính các giá trị ước lượng của Y, cần ước lượng hợp lý tối đa giá trị của β. Để làm được điều này lấy
0, thu được 1 hệ phương trình. Ngày nay, phương pháp ước lượng các hệ số đã được tự động hóa dựa trên một số phần mềm kinh tế lượng như Eviews, SPSS, … Trong nghiên cứu thực nghiệm, người ta có thể tìm cách bỏ đi một số biến mà vai trò giải thích cho biến Y không đủ lớn (hệ số không có ý nghĩa thống kê), nhằm tránh hiện tượng các biến độc lập có tương quan lẫn nhau làm sai lệch kết quả của mô hình.
Khi đã ước lượng được các hệ số β, lúc này trước khi tiến hành dự báo xác suất khả năng trả nợ của khách hàng, điều cần thiết là tiến hành một số kiểm định để xem xét mô hình hồi quy đó đã hợp lý chưa, liệu có tồn tại khuyết tật nào của mô hình không. Để giải quyết vấn đề cần tiến hành một số kiểm định như sau:
- Kiểm định tính ngẫu nhiên của phần dư: các sai số thu được từ mô hình ước lượng so với giá trị thực tế là Y phải là sai số ngẫu nhiên. Để kiểm định tính ngẫu nhiên của các sai số này, người ta có thể sử dụng kiểm định Dickey- Fuller hoặc kiểm định Philip-Perron.
- Kiểm định tính định dạng đúng của mô hình: mô hình hợp lý là mô hình được định dạng đúng, việc định dạng sai mô hình có thể dẫn đến các kết quả sai lệch và làm kết quả dự báo bị méo mó. Để kiểm định xem mô hình được định dạng đúng hay chưa, người ta sử dụng thống kê Hosmer- Lemeshow.
Nếu mô hình có các phần dư là sai số ngẫu nhiên và được định dạng đúng thì mô hình được coi là phù hợp, có thể sử dụng để dự báo. Ngược lại, nếu không thỏa mãn 2 điều kiện trên cần hồi quy lại mô hình với các biến độc lập khác hoặc tiến hành một số hiệu chỉnh cần thiết như tăng cỡ mẫu, điều chỉnh định dạng hàm, …
Một mô hình được coi là thành công hay không phụ thuộc chủ yếu vào tính chính xác của kết quả dự báo thu được từ mô hình đó. Do biến Y chỉ có thể nhận 2 giá trị là 0 hoặc 1, do vậy người ta đưa vào 1 ngưỡng xác suất để xếp khách hàng vào mức 0 hoặc 1 (tương ứng với không có khả năng trả nợ – có khả năng trả nợ). Ngưỡng xác suất ở đây thường được lấy là 0,5; tức là, nếu xác suất khách hàng trả được từ 0,5 trở lên, khi đó xếp khách hàng vào nhóm trả được nợ. Nếu xác suất
khách hàng trả được nợ nhỏ hơn 0,5, khi đó xếp khách hàng vào nhóm không trả được nợ. Sau đó so sánh việc xếp loại khách hàng này với thực tế trả nợ của họ xem tỷ lệ đúng là bao nhiêu, đó chính là độ chính xác của kết quả dự báo.