quan giữa các quan sát trong một quốc gia theo các năm
Trong điều kiện xuất hiện phương sai thay đổi và tương quan trong nhóm các quan sát của một quốc gia theo thời gian như đã đề cập ở trên. Các ước lượng GMM trong phương trình (1) này không hiệu quả mặc dù là ước lượng vững. Vì vậy, để khắc phục tình trạng này, nhóm tác giả sử dụng phương pháp GMM hai bước để điều chỉnh thành phần tự do Ω trong công thức (1) và (2). Trong đó bước một hồi quy phương trình với các biến công
(1) (2)
cụ. Sau đó, phương pháp này tiếp tục sử dụng phần dư trong mô hình các biến công cụ để tính toán thành phần Ω trong ước lượng GMM ở công thức (1) và (2) để lần lượt xử lý hiện tượng phương sai thay đổi và tương quan giữa các quan sát theo năm của cùng một quốc gia.
Ma trận ̂ là một ma trận vuông có kích thước với n là số quan sát trong mẫu, có
đường chéo là phần dư trong mô hình hồi quy các biến công cụ ở bước một, được sử dụng để khắc phục hiện tượng phương sai thay đổi.
Ma trận ̂ trên được sử dụng để khắc phục tình trạng tương quan giữa các quan sát trong
một quốc gia theo các năm. Ma trận ̂ là một ma trận vuông có kích thước , với
M là số quốc gia. Trong đó, ̂ là ma trận hiệp phương sai có kích thước trong quốc gia thứ (intra-cluster covariance matrix), với là số năm được quan sát trong một quốc gia, ̂ ̂ ̂ với ̂ là vector các phần dư của các quan sát trong một quốc gia thứ qua năm trong phương trình hồi quy các biến công cụ.
Bằng cách chọn các ma trận Ω như trên để đưa vào phương trình (1) và (2) ta nhận được các ước lượng GMM vững và hiệu quả trong trường hợp có hiện tượng phương sai thay đổi (heteroskedasticity) và tương quan giữa các quan sát trong một quốc gia qua các năm (intra-cluster correlation).