Để giải toán nói chung, đương nhiên bạn cần phải biết vận dụng linh hoạt, tổng hợp các kiến thức của mình, trong đó các kiến thức phức tạp được hình thành từ chính các kiến thức đơn giản nhất, các kiến thức cơ bản. Trong nhiều trường hợp, để giải một bài toán khó đôi khi chỉ cần hoặc cần phải sử dụng đến những kiến thức cơ bản.
Hệ thống ví dụ dưới đây sẽ chứng minh cho các bạn thấy tầm quan trọng của bất đẳng thức a2 0 với mọi a (*).
Ví dụ 1 : 1) Chứng minh rằng x2 - x + 1 > 0 với mọi x. 2) Tìm giá trị nhỏ nhất của y = x2 - 2x + 5.
Lời giải :
1) Ta có
với mọi x, do 3/4 > 0 và theo (*).
2) Ta có y = x2 - 2x + 5 = (x - 1)2 + 4 ≥ 4 do (x - 1)2 ≥ 0 với mọi x. Đẳng thức xảy ra <=> (x - 1)2 = 0 <=> x = 1.
Vậy y đạt giá trị nhỏ nhất là 4 khi x = 1. Ví dụ 2 : Giải hệ phương trình
Lời giải : Cộng theo từng vế các phương trình trong hệ trên ta có : x2 + y2 + z2 = y - 1 + z - 1 + x - 1
Vì x2 - x + 1 > 0 ; y2 - y + 1 > 0 ; z2 - z + 1 > 0 với mọi x, y, z (theo ví dụ 1.1) nên phương trình này vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Ví dụ 3 (đề thi TS vào lớp 10 chuyên Phan Bội Châu, Hà Tĩnh) : Giải hệ phương
trình Lời giải : Ta có (1) <=> x2 - xy + y2 - yz + z2 - zx = 0 <=> 2x2 - 2xy + 2y2 - 2yz + 2z2 - 2zx = 0 <=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + + (z2 - 2zx + x2) = 0 <=> (x - y)2 + (y - z)2 + (z - x)2 = 0 (3) Vì (x - y)2 ≥ 0 ; (y - z)2 ≥ 0 ; (z - x)2 ≥ 0 với mọi x, y, z => (x - y)2 + (y - z)2 + (z - x)2 ≥ 0 với mọi x, y, z => (3) <=> x - y = y - z = z - x = 0 <=> x = y = z, thay vào (2) ta có : 3.x2002 = 3.y2002 = 3.z2002 = 32003 => x2002 = y2002 = z2002 = 32002
Vậy hệ phương trình ban đầu có hai nghiệm x = y = z = 3 và x = y = z = - 3.
Ví dụ 4 : Giải phương trình
Lời giải : Điều kiện x ≥ 2 (2). Ta có :
<=> x = 2, thỏa mãn điều kiện (2).
Vậy phương trình (1) có nghiệm duy nhất x = 2.
Ví dụ 5 ((đề thi TS vào lớp 10 ĐHKHTN - ĐHQG Hà Nội 2002) : Cho a, b, c là độ
dài ba cạnh của một tam giác. Chứng minh rằng phương trình sau vô nghiệm : x2 + (a + b + c)x + ab + bc + ca = 0.
Lời giải : Phương trình tương đương với
với mọi x, a, b, c nên để chứng minh phương trình trên vô nghiệm, ta cần phải chứng minh : 4(ab + bc + ca) - (a + b + c)2 > 0.
Thật vậy : 4(ab + bc + ca) - (a + b + c)2 = 2(ab + bc + ca) - a2 - b2 - c2 = 2c(a + b) - (a - b)2 - c2.
Vì a, b, c là độ dài ba cạnh của một tam giác nên : |a - b| < c => (a - b)2 < c2 => (a - b)2 + c2 < 2c2 ; c < a + b => 2c2 < 2c(a + b). Suy ra (a - b)2 + c2 < 2c(a + b) <=> 2c(a + b) - (a - b)2 - c2 > 0 <=> 4(ab + bc + ca) - (a + b + c)2 > 0.
Vậy phương trình ban đầu vô nghiệm. TOÁN TUỔI THƠ 23