Trong Chương 1, chúng ta đã định nghĩa khái niệm cơ bản của ràng buộc và sự thỏa mãn. Trong phần này, chúng ta sẽ mở rộng chúng.
Định nghĩa 2.14.
Một thể hiện ràng buộc trong một tập biến S, chúng ta ký hiệu là CE(S), là một tập hợp các ràng buộc trong S và tập các biến con của nó.
Định nghĩa 2.15.
Một thể hiện ràng buộc trong một tập con các biến S của CSP P, chúng ta ký hiệu là CE(S, P), là một tập hợp tất cả các ràng buộc liên quan trong P
tại S và tập con của các biến.
∀ csp((Z,D,C)): ∀S⊆Z:(CE(S,(Z,D,C)) ≡ {CY│Y⊆S∧CY∈C})
Như vậy không khó khăn khi chúng ta chuyển từ (Z, D, C) thành (Z, D, CE(Z, (Z, D, C))).
Định nghĩa 2.16.
Một nhãn kết hợp CL thỏa mãn một thể hiện ràng buộc CE nếu CL thỏa mãn mọi ràng buộc trong CE:
24
Định nghĩa 2.17.
Một tìm kiếm trong CSP là một backtrack - Tree khi tìm kiếm theo chiều sâu khi trật tự các biến được sắp xếp nếu mỗi biến được gán nhãn, khi đó một biến luôn có thể tìm thấy giá trị phù hợp với tất cả các nhãn.
Việc tổng hợp nghiệm giống như thuật toán tìm kiếm, chúng khám phá đồng thời một lúc nhiều nhánh. Nó cũng được xem như việc rút gọn bài toán khi mà ràng buộc đối với tập tất cả các biến (có nghĩa là n-ràng buộc cho một bài toán với n biến) được tạo ra và rút gọn đến khi một tập chứa toàn bộ các bộ nghiệm và chỉ bộ nghiệm thôi.
Trong quá trình tìm kiếm một nghiệm thành phần được xem xét tại một thời điểm. Một nhãn kết hợp được mở rộng bằng cách thêm một nhãn tại thời điểm đó cho đến khi một bộ nghiệm được tìm thấy hoặc toàn bộ nhãn kết hợp được xét. Ý tưởng cơ bản của tổng hợp nghiệm là tập hợp tập tất cả các nhãn hợp lệ cho các tập biến lớn hơn, cho đến khi tập toàn bộ các biến được làm. Để đảm bảo tính đúng đắn, thuật toán tổng hợp nghiệm phải đảm bảo chắc chắn rằng toàn bộ nhãn kết hợp không hợp lý sẽ được loại bỏ khỏi tập này. Để đảm bảo tính đầy đủ, thuật toán tổng hợp nghiệm phải đảm bảo chắc chắn rằng không nhãn kết hợp hợp lệ nào bị loại bỏ khỏi tập này.
25