3. K蔭T QU謂 VÀ BÀN LU一N
3.2.2.2 K院t qu違 kh違o sát ph違n 泳ng oxi hóa ghép chéo gi英a p-anisidine và
benzylamine
Hình 3. 26: Ph違n 泳ng oxy hóa ghép chéo gi英a p-anisidine và benzylaminẹ Trong nh英ng y院u t嘘 8逢嬰c kh違o sát, 違pj"j逢荏ng c栄a nhi羽v"8瓜 8院p"8瓜 chuy吋n hoá c栄a p-cpkukfkpg" 8逢嬰e" 8ƒpj" ikƒ" vt逢噂c h院t. Theo các nghiên c泳w" vt逢噂e" 8¤{." kho違ng nhi羽v"8瓜 s穎 d映pi"v逢挨pi"8嘘k"8c"f衣ng. Nhóm tác gi違 Grirrane và nhóm tác gi違
Cfkowtvj{"8隠u kh違o sát ph違n 泳ng oxy hóa ghép chéo 荏 100oC [66,43]. Trong khi
8„"vƒe"ik違 Wei He cùng các c瓜ng s詠 c栄a mình s穎 d映ng 60oC [67] hay s穎 d映ng 荏 nhi羽v"8瓜 phòng [62,68]. Ph違n 泳pi"8逢嬰c th詠c hi羽p"vtqpi"o»k"vt逢運ng DMF, t益 l羽 mol
p-anisidine:bezylamine là 1:2 v噂i s詠 có m員t c栄a 5 mol% ZIF-9 làm xúc tác, 荏 các nhi羽v"8瓜 70 oC, 80 oC, 90oC và 100 oC. K院t qu違 cho th医y nhi羽v"8瓜 違pj"j逢荏pi"8ƒpi" k吋8院n t嘘e"8瓜 ph違n 泳ng. T衣i nhi羽v"8瓜 70 oC, ph違n 泳ng x違y ra v噂i t嘘e"8瓜 r医t ch壱m khi ch雨 e„"56'"8瓜 chuy吋n hoá c栄a p-cpkukfkpg"8衣v"8逢嬰c sau 6 gi運0"Mjk"v<pi"pjk羽v"8瓜."8瓜 chuy吋n hoá c栄a p-cpkukfkpg"v<pi"pjcpj."8衣v"8逢嬰e"83'"x "99'"v逢挨pi"泳ng v噂i nhi羽t 8瓜 90oC và 100 oE"8衣v"8逢嬰c sau 6 gi運. Fq"8„"pjk羽v"8瓜"100oC 8逢嬰e"n詠c"ej丑p"ejq"eƒe" mj違q"uƒvvk院r"vjgq.
Hình 3. 27: 謂pj"j逢荏ng c栄a nhi羽v"8瓜 lên ph違n 泳ng oxy hóa ghép chéọ
V噂i k院t qu違8«"e„."{院u t嘘 ti院r"vjgq"8逢嬰c kh違o sát là 違pj"j逢荏ng c栄a n欝pi"8瓜 z¿e"vƒe"8院p"8瓜 chuy吋p"jqƒ"x "8瓜 ch丑n l丑c c栄a s違n ph育m. Ph違n 泳pi"8逢嬰c th詠c hi羽n vtqpi"o»k"vt逢運ng DMF, t益 l羽 mol p-anisidine:bezylamine là 1:2 t衣i nhi羽v"8瓜 100oC
v噂i n欝pi"8瓜 ZIF-9 l亥p"n逢嬰t là 0 mol %, 1 mol%, 3 mol%, 5 mol%. K院t qu違vjw"8逢嬰c
19 % p-cpkukfkpg"8«"ejw{吋n hoá sau 6 gi運 khi n欝pi"8瓜 xúc tác là 0 mol%. Vi羽e"v<pi" n欝pi"8瓜 xúc tác t瑛2"oqn'"n‒p"vj pj"3"oqn"'."5"oqn'"ik¿r"v<pi"8瓜 chuy吋n hoá c栄a benzylamine t瑛 19% lên thành 71%, 73%. Giá tr鵜p {"v<pi"n‒p"vj pj"99'"8瓜 chuy吋n hoá khi dùng 5 mol% ZIF-9 sau 6 gi運. Trong m瓜t s嘘 nghiên c泳w"vt逢噂e"8¤{."z¿e"vƒe" 8欝ng th吋Ci"PRu"8逢嬰c dùng là 6 mol% [67], CuCl 0.5 mol% [43], CuI 1 mol% [62] và n欝pi"8瓜 có th吋n‒p"8院p"32"oqn'"pj逢"EwDt"[63] tuy nhiên th運i gian ph違n 泳ng l衣i kéo dàị
Hình 3. 28: 謂pj"j逢荏ng c栄a n欝pi"8瓜 xúc tác lên ph違n 泳ng oxy hóa ghép chéọ Trong ph違n 泳ng oxy hóa thì vi羽c l詠a ch丑p"vƒe"pj¤p"qz{"j„c"e pi"t医t quan tr丑ng vì nó 違pj"j逢荏pi"8院n hi羽u su医t ph違n 泳ng. Vì v壱y ti院n hành ki吋m tra 違pj"j逢荏ng c栄a TBHP và so sánh v噂i các ch医t oxy hóa khác lêp"8瓜 chuy吋p"j„c"x "8瓜 ch丑n l丑c c栄a s違n ph育m. Ph違n 泳pi" 8逢嬰c th詠c hi羽p" vtqpi" o»k" vt逢運ng DMF, t益 l羽 mol p- anisidine:bezylamine là 1:2 v噂i s詠 có m員t c栄a 5 mol% ZIF-9 làm xúc tác t衣i nhi羽t 8瓜 100 oC Các tác nhân s穎 d映ng là TBHP, H2O2 và không khí. M院v"sw違"ejq"vj医{" H2O2 x "mj»pi"mj ."rj違p"泳pi"z違{"tc"t医v"mj„0"X噂k"TBHP làm tác nhân oxy hóa."8瓜" ejw{吋p"jqƒ"8衣v"8逢嬰e"ucw"8"ik運"n "97'."ej泳pi"v臼"u詠"jk羽w"sw違"e栄c"ej医v p {0"Vt逢噂e" 8¤{" 8«" e„" pjk隠w" ej医v" qz{" j„c 8逢嬰e" mj違q" uƒv" ejq" rj違p" 泳pi" p {" pj逢 tert-butyl hypoiodite (tBuOI) [68], di-tert-butyldiaziridinone [69] và s穎 d映ng nhi隠u nh医t là O2 [61,63,70] hay không khí [43,62,65,67].
Hình 3. 29: 謂pj"j逢荏ng c栄a tác nhân oxy hóa lên ph違n 泳ng oxy hóa ghép chéọ
謂pj"j逢荏ng c栄a dung môi ph違n 泳ng là y院u t嘘8逢嬰c l詠a ch丑n ti院r"vjgq"8吋8ƒpj"
giá 違pj" j逢荏ng lên ph違n 泳ng. H厩n h嬰p ph違n 泳ng g欝m: t益 l羽 mol p-
anisidine:bezylamine là 1:2 v噂i s詠 có m員t c栄a 5 mol% ZIF-9 làm xúc tác t衣i nhi羽t 8瓜 100 oC. Các dung môi DMF, DMSO, toluen và p-xylen 8逢嬰e"n詠c"ej丑p"ejq"mj違q" uƒv"x隠"違pj j逢荏pi"e栄c"eƒe"fwpi"o»k"p {"8院p"8瓜"ejw{吋p"jqƒ. Ph違n 泳pi"8逢嬰c ti院n hành 荏 50 oC v噂i n欝pi"8瓜 ZIF-9 là 5 mol%. M院v"sw違"ejq"vj医{"pj英pi"mjƒe"dk羽v"t " t羽v<"fwpi"o»k"e pi"rj¤p"e詠e"vj·"8瓜"ejw{吋p"jqƒ"p-anisidine e pi"n噂p. V噂i dung môi DMA, p-xylene và toluene ph違n 泳ng x違y ra v噂k" 8瓜 chuy吋p" jqƒ" 8衣v" 8逢嬰c trong kho違ng 58-63% sau 6 gi運. Khi chuy吋n sang các dung môi phân c詠c khác pj逢"DMF 8瓜 chuy吋n hoá v<pi"n‒p"77% sau 6 gi運.
Hình 3. 30: 謂pj"j逢荏ng c栄c"fwpi"o»k"n‒p"8瓜 chuy吋n hóa c栄a ph違n 泳ng.
A嘘kx噂k"o瓜v"z¿e"vƒe"f鵜"vj吋."xk羽e"eƒe"v¤o"jq衣v"v pj"e栄c"z¿e"vƒe"d鵜"vƒej"tc"mj臼k" e医w" vt¿e" e栄c" p„" x " ejw{吋p" x q" o»k" vt逢運pi" rj違p" 泳pi" n " o瓜v" vtqpi" pj英pi" x医p" 8隠" 8ƒpi"8逢嬰e"swcp"v¤o"x "zgo"zfiv"vt逢噂e"mjk"mj鰯pi"8鵜pj"v pj"f鵜"vj吋"e栄c"p„0"Fq"8„." rj違p"泳pi"mk吋o"vtc"v pj"f鵜"vj吋"*ngcejkpi"vguv+"8逢嬰e"vk院p"j pj"pj逢"ucw<"rj違p"泳pi"8逢嬰e" vj詠e"jk羽p"vtqpi"8k隠w"mk羽p"vj»pi"vj逢運pi<"V衣k"pjk羽v"8瓜 100 oC trong dung môi DMF x噂k"p欝pi"8瓜"¥KH-;"n "7"oqn'."v雨"n羽"oqn"p-anisidine:benzylamine là 1:2 và 1 mmol VDJR0"Rj違p"泳pi"8逢嬰e"vk院p"j pj"vtqpi"3"ik運 vj·"f瑛pi"n衣k."z¿e"vƒe"8逢嬰e"n逸pi"x "tách tc"mj臼k"fwpi"f鵜ej d茨pi"rj逢挨pi"rjƒr"n{"v¤o0"Ucw"mjk"¥KH-;"8逢嬰e"vƒej"tc."j厩p"j嬰r" fwpi"o»k"8„"8逢嬰e"u穎"f映pi"pj逢"n "ej医v"z¿e"vƒe"ejq"rj違p"泳pi"o噂k"e pi"x噂k"v益"n羽"eƒe" ej医v"pj逢"vt‒p0"A瓜"ejw{吋p"jqƒ"e栄c"p-anisidine 8逢嬰e"ijk pj壱p"d茨pi"eƒej"rj¤p"v ej" o磯w"8逢嬰e"n医{"ikƒp"8q衣p"vjgq"vj運k"ikcp"d茨pi"u逸e"m "mj 0"M院v"sw違"ejq"vj医{"mjk"u穎" f映pi"f鵜ej"8«"vƒej"nq衣k ZIF-9 làm z¿e"vƒẹ"8瓜"ejw{吋p"jqƒ"e栄c"p-anisidine không thay 8鰻k" pjk隠w" mjk" uq" uƒpj" x噂k" p欝pi" 8瓜" 2" oqn'0" Ak隠w" p {" ej泳pi" v臼" ¥KH-9 hoàn toàn 8逢嬰e"vƒej"tc"mj臼k"fwpi"f鵜ej"e "x "p„vj詠e"u詠"n "o瓜v"z¿e"vƒe"f鵜"vj吋0
Hình 3. 31: Thí nghi羽m ki吋m tra tính d鵜 th吋 c栄a ZIF-9.
M瓜t trong nh英pi"逢w"vj院 x逢嬰t tr瓜i c栄a xúc tác d鵜 th吋 so v噂k"z¿e"vƒe"8欝ng th吋 là kh違 p<pi"vjw"j欝i và tái s穎 d映ng c栄c"p„0"Fq"8„."z¿e"vƒe"¥KH-;"8逢嬰c thu h欝i sau ph違n 泳ng b茨ng cách g衣n tách ra kh臼i h厩n h嬰p s違n ph育m, r穎a nh姻 v噂i m瓜t ít DMF r欝i s医y trong chân không 荏 170 oC trong 1 gi運, r欝k"8go"u穎 d映ng l衣i cho ph違n 泳ng ban 8亥u v噂i n欝pi"8瓜 8«"dk院t. Ph違n 泳ng 8逢嬰c th詠c hi羽n gi英a p-anisidine và benzylamine v噂i t雨 l羽 mol là 1:2 trong dung môi DMF 荏 100 oC, s穎 d映ng TBHP làm tác nhân oxy hóa và 5 mol% ZIF-9. K院t qu違 cho th医{"8瓜 chuy吋n hoá c栄a p-anisidine sau 5 l亥n thu h欝i ch雨e”p"8衣v"8逢嬰c 57% .
Hình 3. 32: A瓜 chuy吋n hoá c栄a ph違n 泳ng gi英a p-anisidine và benzylamine s穎 d映ng ZIF-9 sau 5 l亥n thu h欝ị
K蔭T LU一N
Vtqpi"vj運k"ikcp"vk院p"j pj"nw壱p"x<p."o瓜v"u嘘"m院v"sw違"vjw"8逢嬰e"pj逢"ucw<
- N亥p"8亥w"vk‒p"v衣k"Xk羽v"Pcọ"x壱v"nk羽w"ZIF-67 8逢嬰e"v鰻pi"j嬰r"d茨pi"rj逢挨pi"rjƒr" fwpi"o»k"pjk羽v0"Eƒe"m院v"sw違"rj¤p"v ej"jqƒ"n#"8«"8逢嬰e"mk吋o"vtc"x "8ƒpj"ikƒ" i欝o"rj¤p"v ej"pjk宇w"z衣"vkc"Z"*ZTF+."rj¤p"v ej"rj鰻"j欝pi"piq衣k"*HV-IR), phân v ej"pjk羽v"vt丑pi"n逢嬰pi"*VIC+."rj¤p"v ej"piw{‒p"v嘘"*CCỰ"m院v"sw違"ej映r"m pj" jk吋p"xk"8k羽p"v穎"swfiv"*UGƠ"x "m pj"jk吋p"xk"8k羽p"v穎"vtw{隠p"swc"*VGỢ"m院v"sw違" 8q"j医r"rj映"x壱v"n#"P2 荏"99M0"X壱v"nk羽w"ZIF-67 8逢嬰e"v鰻pi"j嬰r"n衣k"vjgq"o瓜v"u嘘" e»pi"vt·pj"8«"e»pi"d嘘"vt逢噂e"8¤{"x "8«"ewpi"e医r"8亥{"8栄"eƒe"m院v"sw違"rj¤p"v ej" pj逢"vt‒p0
- Ak吋o"o噂k"x "swcp"vt丑pi"pj医v"e栄c"pijk‒p"e泳u là eƒe"nq衣k"x壱v"nk羽w"OQH"8逢嬰e" u穎"f映pi"n o"z¿e"vƒe"ejq"eƒe"rj違p"泳pi"oxy hóạ Pj違p"泳pi"8逢嬰e"ej丑p"n "oxy
j„c"8„pi"x”pi"ik英c"4-aminoacetophenone và benzylamine và oxy hóa ghép
ejfiq"ik英c"r-anisidine và benzylamine 8隠w"e„"vj吋"u穎"f映pi"eƒe"z¿e"vƒe"ZIF 8«" v鰻pi"j嬰r"x "ejq"vj医{"8瓜"ejw{吋p"jqƒ"ecq.
- Rj違p"泳pi"qz{"j„c"8„pi"x”pi"ik英c"4-aminoacetophenone và benzylamine u穎" f映pi"3 mol% ZIF-67 x噂k" v雨" n羽" oqn"2-aminoacetophenone : benzylamine là 1:1.2 x噂k"u詠"e„"o員v"e栄c"5 8逢挨pi"n逢嬰pi"oqn"TBHP 8«"vjw"8逢嬰e"8瓜"ejw{吋p"jqƒ" e栄c"2-aminoacetophenone sau 4"ik運"rj違p"泳pi"n ":2%.
- Rj違p" 泳pi" qz{" j„c" ijfir" ejfiq" ik英c"p-anisidine và benzylamine u穎" f映pi" 7" mol% ZIF-9 vtqpi"fwpi"o»k"FOH"x噂k"v雨"n羽"oqn"p-anisidine : benzylamine là 1:2 x噂k"u詠"e„"o員v"e栄c"1 8逢挨pi"n逢嬰pi"oqn"TBHP 8«"vjw"8逢嬰e"8瓜"ejw{吋p"jqƒ" e栄c"p-anisidine sau 6 ik運"rj違p"泳pi"n "77% .
- M院v"sw違"p {"o荏"tc"o瓜v"j逢噂pi"pijk‒p"e泳w"泳pi"f映pi"o噂k"vtqpi"n pj"x詠e"z¿e" vƒe"e栄c"ZIF."8„"n "u穎"f映pi"ZIF e„"ej泳c"v¤o"mko"nq衣k"vtwpi"v¤o"n "eƒe"mko"nq衣k" ejw{吋p"vk院r"泳pi"f映pi"ejq"eƒe"rj違p"泳pi"oxy hóa."x嘘p"ej逢c"8逢嬰e"mhai thác pjk隠w0
- M院v"sw違"e栄c"nw壱p"x<p"8逢嬰e"e»pi"d嘘"vt‒p"v衣r"ej "J„c"j丑e"u嘘"73"v壱r"6CD, 226- 231 (2013)
TÀI LI烏U THAM KH謂O
1. Yaghi, Ọ M. et al. Reticular synthesis and the design of new materials.
Nature 423, 705Î714 (2003).
2. Hwtwmcyc."J0."Eqtfqxc."M0"G0."QÓMgghhg."O0"("[cijk."Q0"O0"Vjg"ejgokuvt{"
and applications of metal-organic frameworks. Science 341, 1230444 (2013).
3. Eđaoudi, M. et al. Systematic design of pore size and functionality in
isoreticular MOFs and their application in methane storagẹ Science 295,
469Î472 (2002).
4. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic
imidazolate frameworks. Proc. Natl. Acad. Scị Ụ S. Ạ 103, 10186Î10191 (2006).
5. Uribe-romo, F. J., Knobler, C. B., Keeffe, M. Ọ, Yaghi, Ọ M. & Spectus, C. Ọ N. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic
Imidazolate Frameworks. xxx, (2009).
6. Bruinsma, R. F., Gennes, P. G. De, Freund, J. B. & Levine, D. A route to high surface area , porosity and inclusion of large molecules in crystals. Nature
427, 523Î527 (2004).
7. Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science
329, 424Î428 (2010).
8. Banerjee, R. et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture
properties. J. Am. Chem. Soc. 131, 3875Î3877 (2009).
9. Morris, W. et al. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate
frameworks. J. Am. Chem. Soc. 132, 11006Î11008 (2010).
10. Pérez-Mayoral, Ẹ et al. Synthesis of quinolines via Friedländer reaction
catalyzed by CuBTC metal-organic-framework. Dalton Trans. 41, 4036Î4044 (2012).
11. Miralda, C. M., Macias, Ẹ Ẹ, Zhu, M., Ratnasamy, P. & Carreon, M. ạ Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO 2 to
Chloropropene Carbonatẹ ACS Catal. 2, 180Î183 (2012).
12. Opanasenko, M. et al. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Scị Technol. (2012). doi:10.1039/c2cy20586f
13. Lin, X.-M., Li, T.-T., Wang, Ỵ-W., Zhang, L. & Su, C.-Ỵ Two Zn(II) metal- organic frameworks with coordinatively unsaturated metal sites: structures,
adsorption, and catalysis. Chem. Asian J. 7, 2796Î804 (2012).
14. Links, D. Ạ, Saha, D., Sen, R. & Koner, S. Porous magnesium carboxylate framework: synthesis, X-ray crystal structure, gas adsorption property and
heterogeneous catalytic aldol condensation reaction. Dalt. Trans. 41, 7399Î 7408 (2012).
15. Saha, D., Maity, T., Sen, R. & Koner, S. Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure
and aldol condensation reaction. Polyhedron 43, 63Î70 (2012).
16. Gu, J.-M., Kim, W.-S. & Huh, S. Size-dependent catalysis by DABCO-
functionalized Zn-MOF with one-dimensional channels. Dalton Trans. 40,
10826Î10829 (2011).
17. Gascon, J., Aktay, Ụ, Hernandez-alonso, M. D., Klink, G. P. M. Van & Kapteijn, F. Amino-based metal-organic frameworks as stable , highly active
basic catalysts. J. Catal. 261, 75Î87 (2009).
18. Park, J. et al. A versatile metal Î organic framework for carbon dioxide
capture and cooperative catalysis. Chem. Commun. 48, 9995Î9997 (2012). 19. Shi, L.-X. & Wu, C.-D. A nanoporous metal-organic framework with
accessible Cu2+ sites for the catalytic Henry reaction. Chem. Commun.
(Camb). 47, 2928Î2930 (2011).
20. Arai, T., Kawasaki, N. & Kanoh, H. Magnetically Separable Cu-Carboxylate
21. ¥cm¦gumk." L0." FCde¦cm." C0." Dtwklpkpez." R0" E0" c0" (" Ygemjw{ugp." D0" O0" Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-
ZIF-9. Appl. Catal. A Gen. 394, 79Î85 (2011).
22. Zhang, Ạ, Li, L., Li, J., Zhang, Ỵ & Gao, S. Epoxidation of olefins with O2 and isobutyraldehyde catalyzed by cobalt (II)-containing zeolitic imidazolate
framework material. Catal. Commun. 12, 1183Î1187 (2011).
23. Dhakshinamoorthy, Ạ, Alvaro, M. & Garcia, H. MetalÎorganic frameworks
as heterogeneous catalysts for oxidation reactions. Catal. Scị Technol. 1,
856Î867 (2011).
24. Dhakshinamoorthy, Ạ, Alvaro, M., Garcia, H. & Valencia, D. Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS
Catal 1, 836Î840 (2011).
25. Leus, K. et al. The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation. Chem. Commun.
(Camb). 46, 5085Î5087 (2010).
26. Fu, Ỵ, Sun, D., Qin, M., Huang, R. & Li, Z. Cu ( II ) -and Co ( II ) - containing metal Î organic frameworks ( MOFs ) as catalysts for cyclohexene
oxidation with oxygen under solvent-free conditions. RSC Adv. 2, 3309Î3314 (2012).
27. Carson, F. et al. Ruthenium complexation in an aluminium metal-organic
framework and its application in alcohol oxidation catalysis. Chemistry 18,
15337Î15344 (2012).
28. Bromberg, L. & Hatton, T. Ạ Aldehyde-Alcohol Reactions Catalyzed under Mild Conditions by Chromium(III) Terephthalate Metal Organic Framework (MIL-101) and Phosphotungstic Acid Composites. ACS Appl. Mater.
Interfaces 3, 4756Î4764 (2011).
29. Wang, S., Bromberg, L., Schreuder-gibson, H. & Hatton, T. Ạ Organophophorous Ester Degradation by Chromium(III) Terephthalate Metal
and Related Aminopyridines. ACS Appl. Mater. Interfaces 5, 1267Î1278 (2013).
30. Dang, T. T. et al. Palladium Nanoparticles Supported on ZIF - 8 As an
Efficient Heterogeneous Catalyst for Aminocarbonylation. ACS Catal. 5,
1406Î1410 (2013).
31. Huang, Ỵ et al. Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki Î Miyaura
cross-coupling reaction. Catal. Commun. 14, 27Î31 (2011).
32. Huang, Ỵ et al. Palladium Nanoparticles Supported on Mixed-Linker Metal Î Organic Frameworks as Highly Active Catalysts for Heck Reactions.
Chempluschem 77, 106Î112 (2012).
33. Anand, N., Ređy, K. H. P., Satyanarayana, T., Rao, K. S. R. & Burri, D. R. A magneticall{" tgeqxgtcdng" -Fe2O3 nanocatalyst for the synthesis of 2-
phenylquinazolines under solvent-free conditions. Catal. Scị Technol. 2,
570Î574 (2012).
34. Eqppqnn{." F0" L0." Ewucem." F0." QÓUwnnkxcp." V0" R0" (" Iwkt{." R0" L0" U{pvjguku" qh"
quinazolinones and quinazolines. Tetrahedron 61, 10153Î10202 (2005). 35. Erba, Ẹ, Pocar, D. & Valle, M. -Triazolines . Part 41 . 1 A new synthesis of
2-alkylquinazolines and 2 , 9-dialkylpyrimido [ 4 , 5- b ] indoles. J. Chem.
Soc. 1, 421Î425 (1999).
36. Hiroaki, Ọ Ỵ Ọ Ỵ T. S. Ọ N. F. Ynamides: a modern functional group for
the new millennium. Org. Lett. 12, 3963Î3965 (2010).
37. Mori, K., Yamaguchi, K., Mizugaki, T., Ebitani, K. & Kaneda, K. Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem. Commun. 461Î462 (2001). doi:10.1039/b009944i
38. Cenini, S., Porta, F. & Pizzotti, M. Low oxidation states ruthenium chemistry VỊ Stoichiometric and catalytic oxidation by molecular oxygen of primary amines bound to dichlorobis(triphenylphosphine)ruthenium(II). J. Mol. Catal.
39. Tang, R., Diamond, S. Ẹ, Neary, N. & Mares, F. Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen. J. Chem. Soc. Chem. Commun. 562 (1978). doi:10.1039/c39780000562
40. Porta, F., Crotti, C. & Cenini, S. Oxidation of amines in the presence of ruthenium complexes: molecular oxygen and iodosylbenzene as oxidants. J.
Mol. Catal. 50, 333Î341
41. Lang, X., Ji, H., Chen, C., Ma, W. & Zhao, J. Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew. Chem. Int.
Ed. Engl. 50, 3934Î3937 (2011).
42. Su, F. et al. Aerobic oxidative coupling of amines by carbon nitride
photocatalysis with visible light. Angew. Chem. Int. Ed. Engl. 50, 657Î660 (2011).
43. Patil, R. D. & Adimurthy, S. Copper-Catalyzed Aerobic Oxidation of Amines to Imines under Neat Conditions with Low Catalyst Loading. Adv. Synth.
Catal. 353, 1695Î1700 (2011).
44. Kegnæs, S., Mielby, J., Mentzel, Ụ V., Christensen, C. H. & Riisager, Ạ Formation of imines by selective gold-catalysed aerobic oxidative coupling of
alcohols and amines under ambient conditions. Green Chem. 12, 1437Î1441 (2010).
45. So, M.-H., Liu, Ỵ, Ho, C.-M. & Che, C.-M. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic
applications and mechanistic studỵ Chem. Asian J. 4, 1551Î61 (2009).
46. Aschwanden, L., Mallat, T., Krumeich, F. & Baiker, Ạ A simple preparation of an efficient heterogeneous gold catalyst for aerobic amine oxidation. J.
Mol. Catal. A Chem. 309, 57Î62 (2009).
47. Grirrane, Ạ, Corma, Ạ & Garcia, H. Highly active and selective gold catalysts for the aerobic oxidative condensation of benzylamines to imines
and one-pot, two-step synthesis of secondary benzylamines. J. Catal. 264,
48. Jiang, L. et al. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions.
Chem. Commun. (Camb). 47, 10833Î5 (2011).
49. Dhakshinamoorthy, Ạ, Alvaro, M. & Garcia, H. Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework
Solids. ChemCatChem 2, 1438Î1443 (2010).
50. Gross, Ạ F., Sherman, Ẹ & Vajo, J. J. Aqueous room temperature synthesis
of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalt. Trans. 41,
5458Î5460 (2012).
51. Qian, J., Sun, F. & Qin, L. Hydrothermal synthesis of zeolitic imidazolate
framework-67 ( ZIF-67 ) nanocrystals. Mater. Lett. 82, 220Î223 (2012). 52. Huang, Ỵ, Lin, Z. & Cao, R. Palladium nanoparticles encapsulated in a
metal-organic framework as efficient heterogeneous catalysts for direct C2
arylation of indoles. Chemistry 17, 12706Î12 (2011).
53. Li, P. et al. Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. Tetrahedron
Lett. 52, 6220Î6222 (2011).
54. Dhakshinamoorthy, Ạ, Alvaro, M. & Garcia, H. Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Adv. Synth. Catal.
352, 711Î717 (2010).
55. Pérez-Oc{qtcn." G0" (" 6glmc." L0" ]Ew5*DVE+4̲<" C" Ogvcn-Organic Framework
Catalyst for the Friedländer Reaction. ChemCatChem 3, 157Î159 (2011). 56. Lv, Ỵ et al. Copper-catalyzed annulation of amidines for quinazoline
synthesis. Chem. Commun. (Camb). 49, 6439Î6441 (2013).
57. Han, B. et al. Efficient aerobic oxidative synthesis of 2-aryl quinazolines via benzyl C-H bond amination catalyzed by 4-hydroxy-TEMPỌ Chem.
Commun. (Camb). 47, 7818Î7820 (2011).
58. Guo, S., Wang, J., Fan, X., Zhang, X. & Guo, D. Synthesis of Pyrazolo[1,5- c]quinazoline Derivatives through Copper- Catalyzed Tandem Reaction of 5-
(2-Bromoaryl)-1H-pyrazoles with Carbonyl Compounds and Aqueous Ammoniạ J. Org. Chem. 1Î9 (2013).
59. Ohta, Ỵ, Tokimizu, Ỵ, Oishi, S., Fujii, N. & Ohno, H. Direct Synthesis of Quinazolines through Copper-Catalyzed Reaction of Aniline-Derived
Benzamidines. Org. Lett., 12, 3963Î3965 (2010).
60. Li, Q. & Kim, H. Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9
catalyst. Fuel Process. Technol. 100, 43Î48 (2012).
61. Liu, L., Zhang, S., Fu, X. & Yan, C.-H. Metal-free aerobic oxidative coupling
of amines to imines. Chem. Commun. (Camb). 47, 10148Î10150 (2011). 62. Tian, H., Yu, X., Li, Q., Wang, J. & Xu, Q. General, Green, and Scalable
Synthesis of Imines from Alcohols and Amines by a Mild and Efficient Copper-Catalyzed Aerobic Oxidative Reaction in Open Air at Room
Temperaturẹ Adv. Synth. Catal. 354, 2671Î2677 (2012).
63. Zhang, C. & Jiao, N. Copper-Catalyzed Aerobic Oxidative Dehydrogenative Coupling of Anilines Leading to Aromatic Azo Compounds using Dioxygen
as an Oxidant. Angew. Chemie 122, 6310Î6313 (2010).
64. Nguyen, L. T. L., Le, K. K. ạ, Truong, H. X. & Phan, N. T. S. MetalÎorganic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Scị Technol.
2, 521Î528 (2012).
65. Largeron, M. & Fleury, M.-B. A biologically inspired Cu(I)/topaquinone-like co-catalytic system for the highly atom-economical aerobic oxidation of
primary amines to imines. Angew. Chem. Int. Ed. Engl. 51, 1Î5 (2012).
66. Grirrane, Ạ, Corma, Ạ & García, H. Gold-catalyzed synthesis of aromatic