III. Hình dạng kích thước và cấu trúc của phân tử protein
Hình 4.5 Các kiểu xoắn trong cấu trúc bậc II của protein
3.3.1. Phương pháp nghiên cứu cấu trúc bậc II
Hiện nay người ta có thể dùng nhiều phương pháp khác nhau để phân tích cấu trúc bậc II của phân tử protein như phổ hồng ngoại, phổ tử ngoại- khả kiến, phổ cộng hưởng từ hạt nhân, trao đổi hydro nặng, đo độ chiết quang v.v..., cơ sở của một số phương pháp thường hay được dùng để phân tích cấu trúc bậc II của protein dựạ trên những nguyên tắc riêng sau:
- Phổ hồng ngoại: phổ hấp thụ hồng ngoại chính là phổ dao động quay, vì khi hấp thụ bức xạ hồng ngoại thì cả chuyển động dao động và chuyển động quay đều bị kích thích. Phổ quay của phân tử không những là phương pháp quý để nhận dạng các chất mà còn cho phép xác định chính xác khoảng cách giữa các hạt nhân nguyên tử và góc giữa các kiên kết.
- Phổ tử ngoại- khả kiến: Khi phân tử hấp thụ bức xạ tử ngoại hoặc khả kiến thì những eletron hoá trị của nó bị kích thích và chuyển từ trạng thái cơ bản lên trạng thái kích thích. Vì thế phổ thu được gọi là phổ tử ngoại khả kiến (Ultraviolet and Visible Spectra, viết tắt là UV- Vis) và cũng được gọi là phổ hấp thụ eletron. Mỗi trạng thái eletron ứng với một đường cong thế năng và do đó ứng với một giá trị xác định của tần số dao động riêng của phân tử.
- Phổ cộng hưởng từ hạt nhân: Dựa trên nguyên lí sử dụng các nơtron và các proton trong hạt nhân nguyên tử, số lượng spin của proton và nơtron đều bằng nhau và bằng 1/2. Tuỳ thuộc vào việc các spin của những hạt nucleon đó có cặp đôi hay không mà hạt nhân của nguyên tử có thể được đặc trưng bởi một số lượng tử spin hạt nhân (I) bằng không hay khác không. Nếu ở hạt nhân có một spin không cặp đôi thì I= 1/2, nếu có nhiều spin không cặp đôi thì I ≥ 1. Nếu chiếu vào mẫu dung dịch protein sóng vô tuyến có tần số xác định, thì các hạt nhân ở mức năng lượng thấp sẽ hấp thụ năng năng lượng của sóng vô tuyến để chuyển lên mức cao. Người ta nói lúc đó đã xẩy ra cộng hưởng từ hạt nhân (Nuclear Magnetic Resonance, viết tắt là NMR). Từ đó người ta đã thiết kế máy phổ cộng hưởng từ hạt nhân bao gồm ống chứa dung dịch mẫu được đặt giữa từ trường của một nam châm
lượng thông qua cuộn cảm bao quanh mẫu, tín hiệu cộng hưởng từ được khuyếch đại, phân tích và truyền sang bút tự ghi để vẽ phổ. Máy cộng hưởng từ hạt nhân được phát hiện từ năm 1946, ứng dụng vào hoá hữu cơ năm 1953, ngày nay càng được phát triển và hoàn thiện. Nó là công cụ đắc lực cho các nhà hoá học trong việc xác định cấu trúc phân tử protein.
- Trao đổi hydro nặng: Dựa trên nguyên tắc các hydro nặng H2 (thường được ký hiệu là D-deuterium) và H3 (thường được ký hiệu là T tritium) để thay thế cho các hydro bình thường đang nằm trong các liên kết trong cấu trúc phân tử protein. Từ đó nhờ hình ảnh phổ đặc trưng được phát ra từ các loại hydro nặng đó để xác định cấu trúc của phân tử.
3.3.2. Cấu trúc bậc II của một số protein đã biết
Theo Paulin và Cori (1951) cấu trúc bậc II của protein bao gồm 2 kiểu chính là xoắn α và phiến gấp β
Bảng 4. 2. Số lượng xoắn α và phiến gấp β trong chuỗi đơn một số protein
số gốc (%) Protein (số gốc) Xoắn α Phiến gấp β
Chymotrypsin (247) Ribonuclease (124) Carboxypeptidase (397) Cytochrom C (104) Lysozyme (129) Myoglobin (153) 14 26 38 39 40 78 45 35 17 0 12 0
Ở trong tóc người ta tìm thấy keratin (hình 4.6) là loại protein có hai dạng cấu trúc: dạng α bình thường và dạng β duỗi thẳng.; cấu trúc phiến gấp β tìm thấy trong fibroin của tơ.
Cấu trúc xoắn α hiện nay được tìm thấy trong nhiều loại protein
khác nhau Mặt khác tỷ lệ % xoắn α trong các protein khác nhau cũng thay đổi khá nhiều. Ví dụ trong hemoglobin và mioglobin là 75%; lisozym là 35%;
ribonuclease là 17% ...
- Ngoài ra còn có kiểu xoắn colagen được tìm thấy trong phân tử colagen (hình 4.7), đơn vị cấu trúc của nó là tropocolagen bao gồm 3 mạch polypeptide bện vào nhau thành một dây cáp siêu xoắn (vì mỗi mạch đơn có cấu trúc xoắn chiều cao của mỗi gốc xoắn trên trục siêu xoắn này là 2,9 anstron, một vòng xoắn là 3,3 gốc amino acid . Ba mạch polypeptide trong “dây cáp” nối với nhau bằng các liên kết hydro.
3.4. Cấu trúc không gian của protein
3.4.1. Định nghĩa và khái niệm về cấu trúc không gian