4. Nâng cao chất lượng phát hiện khuôn mặt và cải thiện tốc độ phát hiện
4.1 Heuristic giúp phát hiện khuôn mặt chính xác hơn
Tiến hành thử nghiệm chúng ta nhận thấy rằng. Trong một vùng màu da có khuôn mặt, có rất nhiều cửa sổ được phát hiện nhưng chỉ trên cùng một khuôn mặt. Điều này có thể thấy trong hình dưới đây.
Hình 27: Ảnh minh họa kết quả khi chưa sử dụng heuristic
Có thể thấy, chúng ta luôn mong muôn mỗi khuôn mặt chỉ được phát hiện một lần với độ chính xác cao nhất. Tuy nhiên kết quả ra bao giờ cũng rất nhiều cửa sổ được phát hiện với độ sai khác không nhiều. Đây thông thường là kết quả của quá trình xử lý đa phân giải.
Để có thể nâng cao độ chính xác của bộ phát hiện, chúng ta dựa vào mô hình mạng neural để tìm ra các heuristic. Có thể thấy rằng các cửa sổ được phân lớp là khuôn mặt đều có độ tin cậy lớn hơn ngưỡng 0.8. Tuy nhiên qua khảo sát thực tế cho thấy, các cửa sổ phân lớp khuôn mặt có độ tin cậy cao nhất là nhứng của sổ phát hiện chính xác nhất, khuôn mặt được phát hiện, gần với tập mẫu huấn luyện nhất.Từ đó chúng ta nghĩ đến heuristic chỉ chọn cửa sổ có độ tin cậy cao nhất trong các cửa sổ trên cùng một khuôn mặt.
Vấn đề đặt ra bây giờ là làm thế nào để biết các cửa sổ là nhận biết cho cùng một khuôn mặt. Một nhận xét nữa được đưa ra như là một heuristic thứ hai. Đó là, thông thường, nếu một cửa sổ là của một khuôn mặt thì các cửa sổ lân cận nó đều là của khuôn mặt ấy. Hai cửa sổ được gọi là lân cận nhau nếu như chúng giao nhau.
Nhận xét này giúp ta tìm được tập các của sổ biểu thị cho một khuôn mặt một cách không mấy khó khăn. Đó là tập các cửa sổ giao với ít nhất một cửa sổ trong tập đó. Để tránh trường hợp có hai cửa sổ trong cùng một tập có cùng độ tin cậy (thực tế kiểm nghiệm đã có trường hợp này). Chúng ta sẽ sủ dụng thêm một điều kiện chọn nữa. Đó là trong tất cả các cửa sổ có độ tin cậy cao nhất như nhau, chúng ta sẽ chọn cửa sổ có sổ lượng cửa sổ trong tập giao với nó là lớn nhất. Với điều kiện chọn này, kết quả cuồi cùng cho một tập cửa sổ hầu như chỉ có một cửa sổ duy nhất.
Như vậy thuật toán để cải thiện chất lượng phát hiện bao gồm hai bước sau đây:
Bước một: Với mỗi cửa sổ, tiến hành đếm số lượng của sổ giao nó. Đông
thời gán cùng nhãn cho tập tất cả các cửa sổ này.
Bước hai: Trong mỗi vùng, chọn cửa sổ có độ tin cậy cao nhất và số của
nhất khi phát hiện. Chúng ta sẽ loại bỏ tất cả các cửa sổ giao với của sổ được chọn này.
Kiểm nghiệm thực tế khi áp dụng các heuristic này, kết quả phát hiện được cải thiện khá nhiều như mô tả trong hình minh họa dưới đây cho ảnh đã sử dụng phía trên
Tuy nhiên, như đã nói, khái niệm heuristic chỉ mang tính một thủ thuật, nó khác với khái niệm thuật toán. Các heuristic thông thường chỉ đúng trong phần lớn trường hợp, còn trong một số trường hợp, nó không đúng.
Với heuristic này, chúng ta có thể nhận thấy một trường hợp không đúng có hai khuôn mặt, một khuôn mặt tuy vẫn đầy đủ nội dụng nhưng bị khuất sau khuôn mặt kia một phần nào đó. Nếu như không sử dụng heuritic, có thể cả hai khuôn mặt đều được phát hiện, nhưng khi sư dụng heuritic, chỉ có một khuôn mặt được phát hiện. Hình dưới đây minh họa cho trường hợp trên:
Hình 29: Ảnh minh họa việc đánh mất cửa sổ khuôn mặt khi sử dụng heuristic