So sánh kết quả các mô hình

Một phần của tài liệu Hệ thống phát hiện khuôn mặt dựa trên mạng neural và phương pháp vân vùng màu da (Trang 43 - 45)

2. Tổng quan về các kỹ thuật nhận biết màu da dựa trên tính chất điểm ảnh

2.4 So sánh kết quả các mô hình

Để có thể đánh giá và so sánh hiệu năng của các phương pháp mô hình hóa màu da là không dễ, vì mỗi phương pháp thường được đề xuât của một nhóm các nhà nghiên cứu và được thử nghiệm trên cơ sơ dữ liệu riêng. Và chưa có một cơ sở dữ liệu chuẩn nào được công bố rộng rãi cho vấn đề này. Cơ sở dữ liệu huấn luyện và kiểm định được biết đến nhiều nhất đó là cơ sở dữ liệu của Compaq. Trong bảng so sánh được đưa ra dưới đây, là kết quả tốt nhất mà mỗi phương pháp đạt được, được tổng hợp bởi [Valimir Vezhnevets, Vassili Sazonov Alla Andreeva ], với kết quả thử nghiệm dựa trên có ở dữ liệu của Compaq nêu trên. Bảng sau đây sẽ so sánh hệ số phát hiện đúng và không đúng của từng phương pháp. Mặc dù các phương pháp là khác nhau về dữ liệu huấn luyện và tập dữ liệu test, cũng như chiến lược huấn luyện, bảng dưới đây vẫn mô tả một bức tranh toàn cảnh về hiệu năng của các phương pháp [7]:

Phương Pháp Nhận biết đúng Nhận biết sai

Bayes SPM trong RGB (Jones và Regh 1999) 80% 90% 8.5% 14.2% Bayes SPM trong RGB (Bran và Mason 2000) 93.4 % 19.8%

Maximum Entropy Model trong RGB (Jedynak và al. 2002)

80% 8%

Gaussian Mixture models trong RGB (Jones và Rehg 1999) 80% 90% ~9.5% ~15.5% SOM in TS (Brown và al. 2002) 78% 32%

Elliptical boundary model trong CIE – xy (Lee và Yoo 2002)

90% 20.9%

Single Gaussian trong Cb và Cr (Lee và Yoo 2002)

90% 33.3%

Gausian Mixture trong IQ (Lee và Yoo 2002)

90% 30,0%

(Brand và Mason 2000)

Bảng 1: Kết quả nhận biết đúng và sai của các phương pháp 2.5 Đánh giá phương pháp

Ưu điểm chính của các phương pháp sử dụng các ngưỡng để phân lớp điểm ảnh là màu da hay không đó là tính đơn giản và tính trực giác cao trong các quy tắc phân lớp. Tuy nhiên, điểm khó khăn đó là cần phải tìm được cả một không gian màu tốt và các quy tắc xứng đáng trong không gian đó. Phương pháp được đề xuất hiện này sử dụng thuật toán máy học để có thể tìm được không gian và các quy tắc thích hợp, tuy nhiên đề xuất này vẫn đang là một vấn đề mở trong tương lai

Các phương pháp sử dụng mô hình hóa không tham số thật sự nhanh trong cả việc huấn luyện và phân lớp, độc lập với phân bố hình dạng của màu da và cả không gian màu. Tuy nhiên, phương pháp này lại yêu cầu quá nhiều bộ nhớ lưu trữ và phụ thuộc cố dịnh vào tập dữ liệu huấn luyện.

Các phương pháp mô hình hóa có tham số cũng xử lý khá nhanh. Hơn nữa chúng lại có khả năng tự tạo ra các dữ liệu huấn luyện phù hợp, chúng được miêu tả bằng một số lượng không nhiều các tham số và đặc biệt chúng cần không đáng kể bộ nhớ lưu trữ. Tuy nhiên, chúgn có thể sẽ thực sự chậm (giống như mô hình kết hợp giữa trên phân phối Gaussian) trong cả huấn luyện và làm việc, và hiệu năng của chúng phụ thuộc nhiều vào hình dạng của phân phối màu da. Bên cạnh đó, hầu hết các phương pháp mô hình hóa màu da có tham số đều bỏ qua những thống kê về màu không phải là tham số.

Một phần của tài liệu Hệ thống phát hiện khuôn mặt dựa trên mạng neural và phương pháp vân vùng màu da (Trang 43 - 45)

Tải bản đầy đủ (DOC)

(123 trang)
w