Các soliton được quản lý tán sắc 1 Các sợi giảm tán sắc.

Một phần của tài liệu Jitter trong hệ thống truyền dẫn Soliton (Trang 52 - 54)

- Với r=1 (Các soliton có biên độ bằng nhau)

4.3.Các soliton được quản lý tán sắc 1 Các sợi giảm tán sắc.

4.3.1. Các sợi giảm tán sắc.

Một kỹ thuật hấp dẫn được đề ra năm 1987 đáp ứng hoàn toàn điều kiện khắt khe LA<<LD được áp đặt đối với sợi quản lý suy hao bằng cách giảm GVD dọc theo tuyến sợi. Các sợi đó được gọi là sợi giảm tán sắc (DDF) và được thiết kế sao cho giảm GVD làm dung hòa SPM bị giảm trải qua bởi các soliton bị làm yếu bởi các sợi suy hao.

Vì quản lý tán sắc được sử dụng kết hợp với quản lý suy hao, tiến trình soliton trong một DDF được mô tả bởi phương trình (9.3.6) với hệ số đạo hàm bậc hai có một tham số mới d là hàm của ξ do các biến đổi của GVD dọc theo chiều dài sợi. Phương trình NLS có dạng như sau:

( ) ( ) 0 2 1 2 2 2 = + ∂ ∂ + ∂ ∂ v p v v d v i ξ τ ξ ξ (9.4.1)

với v=u/ p,d(ξ)=β2(ξ)/β2(0), và p(ξ)lý giải các sự biến đổi công suất đỉnh được giới thiệu bởi quản lý suy hao. Khoảng cách ξ được chuẩn hóa đối với chiều dài tán sắc, 2/ 2(0)

0 β

T

LD = , được xác định nhờ sử dụng GVD

tại đầu vào sợi quang.

Vì ξ phụ thuộc vào các hệ số thứ hai và ba, phương trình (9.4.1) không phải là một phương trình NLS chuẩn. Tuy nhiên nó có thể được giảm đến chỉ phụ thuộc vào hệ số thứ nhất nếu chúng ta giới thiệu biến truyền lan mới như sau:

ξ =∫ξ ξ ξ

0

' d( )d (9.4.2)

giá trị này chuẩn hóa lại phạm vi khoảng cách đối với giá trị cục bộ của GVD. Trong các hệ số của ξ'phương trình (9.4.1) trở thành

0 ) ( ) ( 2 1 2 2 2 ' + = ∂ ∂ + ∂ ∂ v v d p v v i ξξ τ ξ (9.4.3)

Nếu dạng GVD được chọn bởi vậy d(ξ)=p(ξ)=exp(-Γξ). Phương trình (9.4.3) giảm phương trình NLS chuẩn đã thu được với sự có mặt của các tổn thất sợi quang. Kết quả các tổn thất quang không ảnh hưởng trên soliton mặc dù năng lượng bị suy giảm khi các DDF được sử dụng. Các bộ khuyếch đại tập trung có thể được đặt tại một số khoảng cách và không bị hạn chế bởi điều kiện LA<<LD.

Sự phân tích trên cho thấy rằng các soliton cơ bản có thể được duy trì trong sợ bị tổn thất đã cung cấp cho GVD của nó sự giảm theo hàm mũ: β2(z) =β2(0)exp(−αz) (9.4.4)

kết quả có thể dễ hiểu bởi lưu ý rằng công suất đỉnh soliton P0 giảm theo hàm mũ trong sợi suy hao một cách chính xác như trên. Dễ dàng suy ra từ phương trình (9.1.4) rằng yêu cầu N=1 có thể được duy trì mặc dù suy hao công suất, nếu cả β2,γ giảm theo hàm mũ ở cùng một tốc độ. Sau đó soliton cơ bản duy trì dạng và độ rộng xung của nó thậm chí trong sợi suy hao.

4.3.2. Tiến trình thực nghiệm.

Các soliton quản lý tán sắc có thể tạo ra một số lợi ích cho hệ thống truyền dẫn soliton, chẳng hạn như cải thiện tỉ số tín hiệu trên nhiễu, giảm jitter timing.

Các kỹ thuật quản lý tán sắc đã được sử dụng cho các soliton đầu năm 1992 mặc dù liên quan đến các tên như truyền thông soliton thành phần và sự phân bố tán sắc. Trong dạng đơn giản nhất của quản lý tán sắc, một phần tương đối ngắn của sợi bù tán sắc (DCF) được thêm vào định kỳ đối với sợi truyền dẫn tạo ra biểu đồ tán sắc tương tự như đã được sử dụng cho các hệ thống không phải soliton. Một thí nghiệm năm 1995 đã nhận thấy rằng việc sử dụng các DCF đã giảm jitter timing một cách đáng kể. Thực tế, trong thí nghiệm 20Gb/s này, jitter timing trở nên đủ thấp khi tán sắc trung bình được giảm tới gần với giá trị -0,025ps2/km mà ở đó tín hiệu 20Gb/s có thể được truyền vượt đại dương.

Từ năm 1996, nhiều thí nghiệm đã cho thấy các lợi ích của các soliton quản lý tán sắc đối với hệ thống sóng ánh sáng. Trong một thí nghiệm việc sử dụng biểu đồ tán sắc theo định kỳ đã cho phép truyền dẫn luồng bít soliton 20Gb/s trên tuyến sợi quang 5520km gồm các bộ khuyếch đại được

đặt ở các khoảng cách 40km. Trong một thí nghiệm khác các soliton 20Gb/s có thể truyền trên khoảng cách 9000km mà không sử dụng các bộ lọc quang trong đường vì việc sử dụng định kỳ các DCF đã giảm jitter timing hơn 3 lần. Một thí nghiệm đã tập trung vào truyền dẫn các soliton được quản lý tán sắc nhờ sử dụng các biểu đồ tán sắc mà các soliton được truyền hầu hết thời gian trong cơ chế GVD bình thường. Thí nghiệm 10Gb/s này đã truyền các tín hiệu trên 28Mm nhờ sử dụng nhờ sử dụng một vòng lặp sợi quay vòng gồm 100km sợi GVD thông thường và 8km sợi GVD dị thường bởi vậy GVD trung bình là dị thường (khoảng −0,1ps2 /km). Các biến đổi định kỳ độ rộng xung cũng được quan sát trong một vòng lặp sợi quang. Một thí nghiệm nữa trong đó vòng lặp đã được hiệu chỉnh để tạo ra giá trị GVD trung bình không hoặc lớn hơn không một mức không đáng kể. Truyền dẫn ổn định của các soliton 10Gb/s trên 28Mm vẫn được quan sát. Trong tất cả các thí nghiệm các kết quả rất phù hợp với các mô phỏng số.

Một ứng dụng quan trọng của quản lý tán sắc gồm nâng cấp các mạng mặt đất đang tồn tại đã thiết kế với các sợi chuẩn. Một thí nghiệm năm 1997 đã sử dụng các cách tử cho sự bù tán sắc và đã thực hiện truyền dẫn soliton trên khoảng cách 1000km. Khoảng cách truyền dẫn dài hơn được thực hiện nhờ sử dụng vòng lặp sợi quang quay vòng gồm 102km sợi chuẩn với GVD dị thường ( 21ps2/km

2 ≈−

β ) và 17,3 km của DCF với GVD bình thường (

km

ps /

160 22 ≈ 2 ≈

β ). Chiều dài biểu đồ S tương đối lớn trong thí nghiệm này khi các xung 30ps(FWHM) được triển khai trong vòng. Cho đến năm 1999, các soliton được quản lý tán sắc 10Gb/s có thể được truyền trên 16Mm của sợi chuẩn khi các soliton được cực tiểu hóa nhờ chọn vị trí các bộ khuyếch đại truyền lan.

CHƯƠNG V (adsbygoogle = window.adsbygoogle || []).push({});

Một phần của tài liệu Jitter trong hệ thống truyền dẫn Soliton (Trang 52 - 54)