M ỤC LỤC
d ạng AOA
2.2.1.2 Tính các thông số cơ bản
+ Thời điểm sớm của biến cố (earliest time for an event):
Tính theo phương pháp thuận (forward pass) từ nút khởi công đến nút kết thúc dự án.
Nút khởi công 1 thì E1 = 0 . Đếnnút 2 trong sơ đồ ở H.2.1a (ví dụ 1) thì E2 rõ ràng bằng 2 vì biến cố hoàn thành hoạt động (1,2) là E1+t12 (với t12 là khoảng thời gian thực hiện công việc (1,2). Việc tính E3, E4, E5, E6, E9, E10 và E11 cũng tương tự vì các nút tương ứng chỉ có một cungvào, khi đó
Ei = Ej + tji
ở đây j là nút ngay trước i . Chẳng hạn E6 = E4 + t46 = 16 + 6 = 22 . Nếu có nhiều cung và nút, tức là nhiều hoạt động kết thúc tại biến cố, thì từ định nghĩa Ei rõ ràng đây là thời điểm mọi hoạt động đó vừa xong cả, tức là phải lấy maximum của các tổng. Chẳng hạn
E7 = max {E4 + t47 , E5 + t57 } = max {16 + 7, 20 + 5} = 25
E8 = max {E5 + t58 , E6 + t68 } = max {20 + 0, 22 + 7} = 29
E9 = max {E7 + t79 } = 33
Tổng quát, công thức tính Ei cho mọi trường hợp là Ei = max
j {Ej + tji }
ở đây j là các nút ngay trước i, tức là có cung nối tới i. Các Ei được ghi ở H.2.2.1 là số đầu trong ngoặc ở mỗi nút .
+Thời điểm muộn (latest time) của biến cố j:
Tính theo phương pháp ngược (backward pass) từ nút kết thúc dự án trở về nút khởi công. Theo định nghĩa, ở nút kết thúc thì En = Ln, ở ví dụ H.2.1 là E13 = L13 = 44 . Nếu ở biến cố chỉ có một cung ra, tức là một hoạt động được bắt đầu, thì thời điểm muộn là
Lj = Li – tji’
Tức là thời điểm muộn của nút ngay sau nó trừ đi thời gian thực hiện hoạt động nối hai nút . Các biến cố 12, 11, 10, 8, 7, 6, 3, 2 và 1 ở H.2.1a là ở trường hợp này . Nếu có nhiều cung ra khỏi biến cố, thì theo định nghĩa ta có
Lj =min
ở đây min theo các nút i ngay sau j và tji là thời gian thực hiện hoạt động nối (j,i) . Các nút 9, 4, 5 là trường hợp này, chẳng hạn
L9 = min {L11 – t911 , L12 – t912 } = min { 38 – 4, 38 – 5 } = 33
Hãy chú ý sự “đối xứng” của quá trình tính Ei và Lj . Các Lj được ghi ở số thứ 2 trong ngoặc ở mỗi nút trong H.2.2.1 0 1 (0,0) 0 0 2 (2,2) 0 0 3 (6,6) 0 0 4 (16,16) 0 4 4 6 (22,26) 0 5 (20,20) 4 0 1 4 8 (29,33) 0 7 (25,25) 4 0 4 10 (38,42) 0 9 (33,33) 1 0 4 1 11 0 12 0 (37,38) (38,38) 0 13 (44,44) H.2.2.1
2.2.1.3.Thời gian dự trữ.
Thời gian dự trữ (slack hoặc float) của một biến số là hiệu thời điểm muộn và thời điểm sớm của nó: di = Li – Ei . Thời gian dự trữ (slack hoặc float) của hoạt động được chia làm hai loại :
Thời gian dự trữ chung (total float hoặc total slack) của hoạt động (i, j): TFij = Lj – Ei – tij
TFij chỉ thời gian có thể trì hoãn của hoạt động ( i, j) mà không ảnh hưởng đến thời điểm kết thúc cả dự án . Vì nó bằng thời gian tối đa cho hoạt động ( i, j) là Lj - Ei trừ đi thời gian để thực hiện là tij .
Thời gian dự trữ độc lập (free float hoặc free slack) của hoạt động (i, j), kí hiệu là FFij , cũng là hiệu thời gian dành cho ( i , j) và thời gian thực hiện là tij , nhưng với giả thiết là mọi hoạt động đều bắt đầu sớm nhất có thể, vậy
FFij = Ej – Ei - tij
Trên sơ đồ mạng lưới thì dilà hiệu hai số ở trong ngoặc ở nút i, thường được ghi bằng số trong ô vuông cạnh nút . Thời gian dự trữ chung của hoạt động (i, j) TFijđược ghi trong ô vuông cạnh mỗi cung. Còn thời gian dự trữ độc lập của hoạt động (i, j) FFijít quan trọng hơn, thường không ghi, xem hình H.2.2.1.