Không giống như biến đổi Fourier chỉ thích hợp khi phân tích những tín hiệu ổn định (stationary),Wavelet là phép biến đổi được sử dụng để phân tích các tín hiệu không ổn định (non-stationary) – là những tín hiệu có đáp ứng tần số thay đổi theo thời gian. Để khắc phục những hạn chế của biến đổi FT, phép biến đổi Fourier thời gian ngắn – STFT được đề xuất. Chỉ có một sự khác biệt nhỏ giữa STFT và FT: Trong biến đổi STFT, tín hiệu được chia thành các khoảng nhỏ và trong khoảng đó tín hiệu được giả định là tín hiệu ổn định. Để thực hiện kỹ thuật này cần chọn một hàm cửa sổ w sao cho độ dài của cửa sổ đúng bằng các khoảng tín hiệu phân chia. Với phép biến đổi STFT, chúng ta có thể thu được đáp ứng tần số - thời gian của tín hiệu đồng thời mà với phép biến đổi FT ta không thực hiện được. Biến đổi STFT
đối với tín hiệu liên tục thực được định nghĩa như sau:
(2.9)
Trong đó độ dài thời gian của cửa sổ là (t-τ), chúng ta có thể dịch chuyển vị trí của cửa sổ bằng cách thay đổi giá trị t và để thu được các đáp ứng tần số khác nhau của đoạn tín hiệu ta thay đổi giá trị τ.
Trên cơ sở cách tiếp cận biến đổi STFT, biến đổi Wavelet được phát triển để giải quyết vấn đề về độ phân giải tín hiệu (miền thời gian hoặc tần số) mà STFT vẫn còn hạn chế. Biến đổi Wavelet được thực hiện theo cách: tín hiệu được nhân với hàm Wavelet (tương tự như nhân với hàm cửa sổ trong biến đổi STFT), rồi thực hiện biến đổi riêng rẽ cho các khoảng tín hiệu khác nhau trong miền thời gian tại các tần số khác nhau. Cách tiếp cận như vậy còn được gọi là: phân tích đa phân giải – MRA (Multi Resolution Analysis): phân tích tín hiệu ở các tần số khác nhau và cho các độ phân giải khác nhau.
MRA khi phân tích tín hiệu cho phép: phân giải thời gian tốt và phân giải tần số kém ở các tần số cao; phân giải tần số tốt và phân giải thời gian kém ở các tần số thấp. Như vậy kỹ thuật này rất thích hợp với những tín hiệu: có các thành phần tần số cao xuất hiện trong khoảng thời gian ngắn, các thành phần tần số thấp xuất hiện trong khoảng thời gian dài chẳng hạn như ảnh và khung ảnh video.
Có thể hiểu phép biến đổi DWT như là áp dụng một tập các bộ lọc: thông cao và thông thấp. Thiết kế các bộ lọc này tương đương như kỹ thuật mã hoá băng con
(subband coding) nghĩa là: chỉ cần thiết kế các bộ lọc thông thấp, còn các bộ lọc thông cao chính là các bộ lọc thông thấp dịch pha đi một góc 180o. Tuy nhiên khác với mã hoá băng con, các bộ lọc trong DWT được thiết kế phải có đáp ứng phổ
phẳng, trơn và trực giao.