Để thuận tiện cho việc phân tích giản đồ nhiễu xạ tia X và đánh giá cấu trúc của mẫu vật liệu chế tạo chúng tôi khảo cứu cấu trúc của vật liệu CdS từ các tài liệu liên quan đã công bố. Giản đồ nhiễu xạ tia X của mẫu CdS được trình bày trong hình 3.8 cho thấy một đỉnh nhiễu xạ có giá trị d = 0,2069 nm (Hình 3.8a) mà theo Bảng 2.1 (trình bày các vạch nhiễu xạ có cường độ mạnh chủ yếu cho pha lục giác và pha lập phương của tinh thể
CdS) tương ứng với mặt phẳng 1120 của pha vật liệu greenokite với cấu
trúc lục giác (h–CdS; JCPDS 41–1049).
Bảng 2.1. Các đỉnh nhiễu xạ tia X của cấu trúc lục giác và cấu trúc lập phương của vật liệu CdS
Các pha lục giác, lập phương và đa cấu trúc có thể cùng tồn tại như trên hình 2.10b. Ở đây cho thấy bên cạnh pha greenokite với vạch nhiễu xạ đặc trưng tại 2θ = 30,880 (d ~0,336 nm), còn có vạch đặc trưng cho pha vật liệu hawlayite với cấu trúc lập phương (c–CdS; JCPDS 10–0454) còn có một đỉnh nhiễu xạ nhỏ tại 2 = 31,75° (d = 0,32704 nm), không tương ứng với cả cấu trúc h–CdS lẫn c–CdS. Đây là một dấu hiệu cho thấy có sự tồn tại của cấu trúc p–CdS.
Hình 2.10. Giản đồ nhiễu xạ tia X của mẫu CdS trước khi nghiền (a, b) và CdS sau khi nghiền 2,5 và 6 giờ (c).
Hình 2.10c là giản đồ nhiễu xạ tia X của mẫu CdS nghiền 2,5 và 6 giờ cho thấy các vạch nhiễu xạ mở rộng đáng kể (xem vạch đơn tại góc 2 ≈ 43o). Như chúng ta đã biết vạch nhiễu xạ tia X mở rộng khi cấu trúc mạng tinh thể bị biến dạng và do hiệu ứng kích thước khi kích thước hạt tinh thể giảm xuống vùng nano mét. Trong trường hợp của chúng tôi đóng góp chủ yếu vào việc mở rộng vạch nhiễu xạ do hiệu ứng kích thước, vì bột sau khi nghiền đã được ủ nhiệt để loại bỏ khuyết tật và biến dạng cấu trúc mạng tinh thể. Điều này sẽ được bàn thêm chi tiết hơn trong phần phổ hấp thụ và
huỳnh quang ở phần sau. Quan sát vạch nhiễu xạ tia X tại góc 430 của mẫu
bột nghiền 2,5 giờ thấy vạch nhiễu xạ gần như gồm hai phần, phần trên khá hẹp nằm trên một phần dưới là một nền phổ khá rộng. Điều này chứng tỏ mẫu chứa các hạt có kích thước khác nhau với phân bố kích thước rất rộng. Giản đồ nhiễu xạ tia X cho thấy, với mẫu nghiền 2,5 giờ, hạt không đều có phân bố kích thước khá rộng trong khi đó với thời gian nghiền dài hơn, 6 giờ, giản đồ nhiễu xạ tia X đặc trưng bởi các vạch nhiễu xạ có độ bán rộng lớn hơn. Điều này cho thấy kích thước hạt giảm đáng kể khi tăng thời gian nghiền và có phân bố kích thước hẹp hơn. Kích thước hạt tinh thể có
thể đánh giá thông qua độ rộng vạch nhiễu xạ tia X nhờ áp dụng công thức Scherrer như sau:
(2.2)
Trong đó λ là độ dài bước sóng nhiễu xạ tia X (trong trường hợp λ = 1,54 Å), βkích thước là độ bán rộng vạch nhiễu xạ, D là kích thước hạt tinh thể cần xác định (trong trường hợp của chúng tôi vạch nhiễu xạ tia X tại 2 ≈
430 được chọn để xác định kích thước của hạt vật liệu, vì đây là một vạch
đơn). Kết quả tính cho thấy, với thời gian nghiền 2,5 giờ, hạt có kích thước trung bình khoảng 30 nm (βkích thước = 0,0049). Với thời gian nghiền dài hơn, 6 giờ, kết quả xác định bằng công thức Scherrer cho thấy kích thước trung bình của hạt giảm mạnh xuống khoảng 10 nm (βkích thước = 0,0143).
Phân tích ảnh nhiễu xạ điện tử của mẫu vật liệu CdS tinh thể khối và mẫu bột vật liệu kích thước nano mét.
Hình 2.11. Ảnh nhiễu xạ điện tử của mẫu CdS chưa nghiền (a) và mẫu CdS
sau khi nghiền trong 1 h (b và c)
Từ ảnh nhiễu xạ điện tử chúng ta thấy vết Bragg trong giản đồ nhiễu xạ điện tử của mẫu CdS chưa nghiền (Hình 2.11a) có cấu trúc lục giác.
Ngoài những điểm nhiễu xạ còn tồn tại các vòng nhiễu xạ chứng tỏ vật liệu này có cấu trúc đa tinh thể pha lục giác. Sau khi nghiền 1 giờ (Hình 2.11 b và c), các chấm nhiễu xạ mở rộng và độ rộng tăng dần (Hình 2.11c) cho thấy có thể đoán nhận kích thước hạt tinh thể giảm sau khi nghiền. Trên hình 3.9c xuất hiện thêm vòng nhiễu xạ đặc trưng cho pha cấu trúc lập phương mà trước đó không xuất hiện trong Hình 2.11a. Điều này cho thấy quá trình chuyển pha cấu trúc từ lục giác sang lập phương đã xảy ra đối với các mẫu chấm lượng tử CdS chế tạo bằng phương pháp nghiền cơ năng lượng cao.
Như vậy, trong mẫu CdS có sự tồn tại các pha cấu trúc: h–CdS, c–CdS và p–CdS. Khi thời gian nghiền càng lâu (kích thước hạt giảm), pha lập phương càng thể hiện rõ rệt. Với cấu trúc phức tạp như vậy vật liệu CdS chắc chắn sẽ có phổ dao động mạng phức tạp và thể hiện những tính chất quang học quang phổ lý thú mà chúng tôi muốn đề cập tới ở phần sau.