PHÂN TÍCH, SO SÁNH KẾT QUẢ ƯỚC LƯỢNG
3.1-PHÂN TÍCH KẾT QUẢ NHẬN ĐƯỢC TỪ CÁC PHƯƠNG PHÁP ƯỚC LƯỢNG
3.1-PHÂN TÍCH KẾT QUẢ NHẬN ĐƯỢC TỪ CÁC PHƯƠNG PHÁP ƯỚC LƯỢNG ƯỚC LƯỢNG
Từ kết quả giá trị VaR danh mục tại các mức ý nghĩa 1%; 2,5%; 5% với 3 phương pháp trình bày ở trên trong 250 ngày (từ 23/2/2009 đến 12/2/2010), tiến hành phân tích theo các thông số sau đây: Khoảng dao động; độ lệch trung bình so với tổn thất thực tế; số quan sát vượt ngưỡng VaR; độ lệch trung bình tại các quan sát vượt ngưỡng VaR, số giá trị VaR vượt ngưỡng - 0.05; Dưới đây chúng ta sẽ trình bày về các thông số này, mục đích là phân tích mức độ phù hợp của các giá trị VaR ước tính từ các phương pháp so với mức độ tổn thất thực tế.
Hình 3.2: So sánh giá trị VaR ước lượng của danh mục với mức giá trị tổn thất thực tế
3.1.1-Khoảng dao động
Như đã trình bày ở trên, trong quá trình mô tả chuỗi lợi suất các tài sản thấy rằng, chuỗi lợi suất dao động trong khoảng [- 0,05; 0,05], chỉ trừ một số trường hợp cá biệt nằm ngoài khoảng này. Chúng ta cũng giải thích được rằng, do Sàn giao dịch Thành phố Hồ Chí Minh áp dụng biên độ giá 5%, các giá trị vượt biên này thuộc vào các ngày giao dịch không hưởng quyền. Như thế, chuỗi lợi suất danh mục của hai tài sản REE và SAM cũng dao động trong khoảng [- 0,05; 0,05]. Chúng ta không thể nói rằng, sẽ chịu một mức tổn thất dưới - 0,05 vào các ngày giao dịch không hưởng quyền, vì do các ngày giao dịch này được xác định từ trước và phần tổn thất này được bù đắp bởi sự chi trả cổ tức. Theo cách tiếp cận đó, chúng ta sẽ nói rằng, mức tổn thất tối đa của danh mục trong một ngày là - 0,05 ( hay 5%), sẽ gọi là mức tổn thất biên. Một khi danh mục chịu tổn thất, thì lợi suất danh mục chỉ có thể đạt giá trị trong khoảng [- 0,05; 0).
Thấy rằng các giá trị VaR 99%, VaR 97,5% ước lượng từ phương pháp thứ nhất (sử dụng các ước lượng không chệch - giả thiết chuỗi lợi suất tài sản
phân phối chuẩn và dừng) và từ phương pháp thứ hai ( Riskmetrics) nằm vượt hẳn ra khỏi khoảng [- 0,05; 0) và cách rất xa khoảng này, các kết quả cho như cột Khoảng dao động hình 3.1. Các giá trị VaR 95% từ hai phương pháp này cũng có tồn tài các quan sát nằm ngoài khoảng [- 0,05; 0). Cột Số giá trị VaR
vượt ngưỡng - 0,05 hình 3.1 cho thấy, tại giá trị VaR 99% ở cả hai phương
pháp đầu, VaR 97,5% ở phương pháp sử dụng các ước lượng không chệch, tất cả 250 giá trị đều vượt ngưỡng - 0,05. Ước tính VaR 97,5% từ phương pháp Riskmetrics có tới 237 quan sát vượt ngưỡng - 0,05. Ở giá trị VaR 95% tính theo ước lượng không chệch, các quan sát vượt ngưỡng - 0,05 là ít hơn hẳn ( 56 quan sát). Tính theo Riskmetrics, VaR 95% vượt ngưỡng - 0,05 là quá nửa (179 quan sát).
Quan sát đồ thị hậu kiểm VaR lợi suất hình 3.3, 3.4, 3.5 dễ dàng thấy rằng, các giá trị VaR ước tính theo phương pháp Copula ở các mức ý nghĩa 1%; 2,5%; 5% không có một giá trị nào vượt giá trị tổn thất biên, các kết quả cho như cột Khoảng dao động hình 3.1, không có bất kỳ VaR lợi suất nào vượt ngưỡng - 0,05.
Theo cách tiếp cận trên về khoảng tổn thất của lợi suất danh mục, ta có thể nói rằng, sau một ngày giá trị tổn thất tối đa là - 0,05 với độ tin cậy 100%. Theo cách định nghĩa này, bước đầu chúng ta cũng có thể thấy rõ mức độ sai lệch của hai phương pháp đầu tiên khi áp dụng giả thiết phân phối chuẩn, bởi với độ tin cậy nhỏ hơn 100% (cụ thể là 99%, 97,5%, 95%), các giá trị VaR lợi suất ước tính được vượt qua - 0,05 là không hợp lý. Hình 3.3, 3.4 cho thấy hầu hết các giá trị VaR ước tính với độ tin cậy 99%; 97,5% theo ước lượng không chệch và Riskmetrics đều vượt giá trị tổn thất biên.
Đối với những chuỗi tài sản không áp dụng biên độ giá, việc so sánh các phương pháp thông thường chỉ dựa vào mức độ sai lệch giữa giá trị VaR ước lượng với giá trị tổn thất thực tế, số quan sát mà mức độ tổn thất thực tế vượt mức giá trị VaR ước tính, trung bình mức độ sai lệch vượt mức VaR này. Ở thị trường chứng khoán Việt Nam, giá cổ phiếu hiện tại áp dụng biên độ giá, tuy vậy, phương pháp Copula vẫn tỏ ra là chính xác hơn cả vì ở các
mức ý nghĩa khác nhau, các giá trị VaR ước tính đều không vượt qua mức giá trị tổn thất biên này.
3.1.2-Độ lệch tuyệt đối trung bình so với tổn thất thực tế
Trong 250 quan sát trong giai đoạn từ 23/2/2009 đến 12/2/2010 có đến 116 quan sát lợi suất danh mục rp đạt giá trị âm, tức là danh mục chịu tổn
thất. Chúng ta chỉ xem xét sai lệch VaR lợi suất tại các mức ý nghĩa trong trường hợp danh mục thực sự chịu tổn thất. Độ sai lệch so với tổn thất thực tế được tính bằng lợi suất danh mục chịu tổn trừ đi giá trị VaR lợi suất ước tính. Độ lệch tuyệt đối trung bình so với tổn thất thực tế được tính bằng tổng tất cả các sai lệch tuyệt đối trong 116 quan sát chia cho 116. Mức độ sai lệch càng nhỏ phản ánh giá trị VaR ước tính càng gần giá trị thực tế. Độ lệch trung bình thể hiện mức sai lệch bình quân trên một chuỗi quan sát. Chúng ta không chỉ xem xét mức độ chính xác của VaR lợi suất chỉ trong một thời điểm, mà cần xác định trong suốt một quá trình.
Kết quả ở cột Độ lệch tuyệt đối trung bình so với tổn thất thực tế hình 3.1, cho thấy, ở mức ý nghĩa nhỏ hơn độ lệch trung bình đạt giá trị lớn hơn. Như thế, trong cả 3 phương pháp, độ lệch tuyệt đối trung bình tính được từ các giá trị VaR lợi suất ở các mức 1%; 2,5%, 5% là giảm dần.
Mức độ sai lệch tuyệt đối trung bình khi chúng ta tính VaR lợi suất danh mục theo phương pháp Riskmetrics (giả thiết lợi suất tài sản phân phối chuẩn và không dừng) là lớn nhất, sau đó là phương pháp sử dụng ước lượng không chệch (giả thiết lợi suất tài sản phân phối chuẩn và dừng), tính VaR lợi suất theo phương pháp Copula cho mức độ sai lệch tuyệt đối trung bình là nhỏ nhất tại tất cả các mức ý nghĩa đã cho.
Theo phương pháp Copula, sai lệch tuyệt đối trung bình so với tổn thất thực tế tính tại các giá trị VaR 99%; VaR 97,5%; VaR 95% lần lượt là
0,024481; 0,023697; 0,022339 nhỏ hơn hẳn so với khi tính bằng hai phương pháp còn lại. Đối với phương pháp Riskmetrics các giá trị này lần lượt là 0,049867; 0,03839; 0,028922. Đối với phương pháp sử dụng ước lượng không chệch các giá trị này lần lượt là 0,043873; 0,033034; 0,024095. Như thế, độ lệch tuyệt đối trung bình khi tính VaR 99%; VaR 97,5% ở hai phương pháp này là lớn hơn hẳn so với sử dụng phương pháp Copula. Giá trị độ lệch tuyệt đối trung bình tính tại VaR 95% của Riskmetrics vẫn lớn hơn giá trị độ lệch tuyệt đối trung bình tính tại VaR 99% của Copula, giá trị độ lệch tuyệt đối trung bình tính tại VaR 95% theo phương pháp sử dụng ước lượng không chệch vẫn lớn hơn giá trị trị độ lệch tuyệt đối trung bình tính tại VaR 97,5% theo Copula. Giá trị độ lệch tuyệt đối trung bình tính tại VaR 95% theo Copula đạt giá trị nhỏ nhất trong cả 3 phương pháp.
Bảng 3.2 - cột Tổng sai lệch tuyệt đối đối với mức tổn thất thực tế cho biết tổng giá trị sai lệch của giá trị VaR danh mục với tổn thất thực tế trong 1 năm (250 quan sát), cột Trung bình sai lệch tuyệt đối đối với mức
tổn thất thực tế cho biết giá trị sai lệch trung bình của 116 thời điểm danh
mục chịu tổn thất. Với các mức ý nghĩa cho trước, phương pháp Copula Student t cho mức độ sai lệch so với mức tổn thất thực tế là nhỏ nhất.
Như vậy theo kết quả hình 3.1, 3.2, phương pháp Copula cho giá trị VaR danh mục gần giá trị tổn thất thực tế nhất so với hai phương pháp còn lại trong 250 quan sát hậu kiểm.
3.1.3-Giá trị vượt ngưỡng VaR
Giá trị vượt ngưỡng VaR là giá trị tổn thất thực tế mà tại đó VaR lợi suất ước tính được lớn hơn nó. Giá trị này phản ánh số lượng VaR ước tính không thể phản ánh được tổn thất thực tế trong một khoảng thời gian.
Cột Số quan sát vượt ngưỡng VaR hình 3.1cho thấy, không có quan sát nào vượt ngưỡng VaR 99% và VaR 97,5% ở phương pháp sử dụng ước lượng không chệch và phương pháp Riskmetrics, do khoảng dao động của các giá trị VaR lợi suất này phần lớn nằm ngoài khoảng [- 0,05; 0), tức là không có quan sát nào có giá trị nhỏ hơn các VaR lợi suất tại các độ tin cậy này. VaR 95% theo phương pháp đầu tiên có 11 quan sát vượt ngưỡng này, VaR
95% theo Riskmetrics có 5 quan sát vượt ngưỡng này.
Theo phương pháp Copula, có 1 quan sát vượt ngưỡng VaR 99%, 7 quan sát vượt ngưỡng VaR 97,5%, 9 quan sát vượt ngưỡng VaR 95%, số các quan sát vượt ngưỡng là nhỏ trong 250 quan sát ước tính. Theo phương pháp Copula, số lượng quan sát vượt ngưỡng là ít hơn khi tính VaR lợi suất theo phương pháp sử dụng ước lượng không chệch, trong khi quan sát hình 3.2 VaR 95% theo phương pháp ước lượng không chệch nằm xa hơn chuỗi lợi suất thực tế so với VaR 95% tính theo Copula.
Chúng ta thấy rằng, khi tính VaR 95% theo Riskmetrics có đến 179 giá trị vượt khỏi mức, như vậy trong 71 giá trị VaR còn lại thuộc khoảng [ - 0,05; 0) có đến 5 giá trị mà tại đó tổn thất thực tế vượt ngưỡng VaR. Trong khi có 250 giá trị VaR thuộc khoảng [ - 0,05; 0) tính theo Copula tức là gấp hơn 3,5 lần so với tính theo Riskmetrics (71 giá trị), có số quan sát vượt ngưỡng VaR chỉ là 9, tức là chỉ gấp 1,8 lần số quan sát vượt ngưỡng VaR 95% tính theo Riskmetrics.
Như vậy, khi tính VaR theo phương pháp Copula cũng có thể nhận thấy rằng số quan sát vượt ngưỡng VaR ít hơn so với tính theo hai phương pháp còn lại.
Chúng ta sử dụng thêm thông số Độ lệch trung bình tại quan sát vượt
ngưỡng VaR, được tính bởi tổng sai lệch tại các quan sát vượt ngưỡng chia
cho số quan sát vượt ngưỡng.
Kết quả từ cột Độ lệch trung bình tại quan sát vượt ngưỡng VaR hình 3.1 cho thấy, sử dụng phương pháp Copula, độ lệch trung bình tại quan sát vượt ngưỡng VaR 99%; VaR 97,5%; VaR 95% lần lượt là – 0,00014; - 0.0006, -
0.00152, không đáng kể và cũng nhỏ hơn độ lệch trung bình tại các quan sát vượt ngưỡng VaR 95% theo Riskmetrics (- 0.00172) và theo phương pháp sử dụng ước lượng không chệch (- 0.00075). Kết quả từ cột Trung bình sai lệch
tuyệt đối tại quan sát vượt ngưỡng VaR hình 3.2 cho biết giá trị sai lệch trung
bình tại các quan sát mà giá trị VaR danh mục ước tính nhỏ hơn mức giá trị tổn thất thực tế của danh mục. Theo phương pháp Copula Student t, độ sai lệch này tại các mức ý nghĩa cho trước là không đáng kể (xem kết quả hình 3.2).